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• Goals

 Replace 230 kV series capacitor banks 

(≈ 50 years of service)

 Increase nominal and emergency ampacity by 

25%

 Increase path transfer capability ≈ 300 MW

• Series compensation requirements

 Increase series compensation to 70%

Project Overview

• Two segments with independent bypass breakers

• MOV

 High current and energy bypass protection logic

 Energy capacity – worst case external faults

Series Capacitor Bank
Equipment Characteristics

Series Capacitor

Damping 

Inductor High-Speed 

Bypass Breaker

MOV
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𝑃 =
𝑉1𝑉2 sin 𝜃12

𝑋𝐿

Uncompensated

Basic Theory Overview

V1Ðq1

XL

V2Ðq2

Basic Theory Overview

Decreased line reactance results in 

increased power transfer

𝑃 =
𝑉1𝑉2 sin 𝜃12
𝑋𝐿 − 𝑋𝐶

Compensated

V1Ðq1

XL

V2Ðq2
XC
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• Exposed to large range of fault currents

 Large fault currents → large voltage drop 

across the capacitor

• Protected by MOVs and/or spark gaps

 MOVs clamp the magnitude

of the voltage

 Spark gaps flash 

during high-voltage

conditions
Spark Gap

Series Capacitor

MOV

HS Breaker

Damping 

Inductor

Series Capacitor Protection

Goldsworthy Equivalent Circuit

MOV resistance is 

inversely proportional to 

series capacitor voltage drop
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Locus of 

ZCALC as 

Fault Current 

Varies

Effect of RC and XCC on 

Impedance-Based Elements

Locus of ZCALC

IF = 6.0 pu – 7.0 pu

IF = 1.0 pu – 2.0 pu
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Voltage Inversion Occurs…

if ZR_FP < XC and ZS + ZR_FP > XC
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Memory Voltage Polarizing 

Overcomes Voltage Inversion

VPRE_FAULT

VFAULT IFAULT

ÐqLINE

Bus S
Bank Out of Service

VFAULT

IFAULT

ÐqLINE

VPRE_FAULT

Bus S
Bank In Service

VA_PRE

VBVC
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VA_PRE
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Bus S
Bank Out of Service

Bus S
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Voltage Inversion Does Not Affect 

Negative- or Zero-Sequence 

Directional Elements
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Current Inversion Occurs…

if XC > ZS + mZL

1.0

Fault

 Point

0.0V
o

lt
a

g
e

 (
p

u
)

1.0

0.0
Cap Bank

Out of Service

Cap Bank

In Service

ZS

VS

(1–m) • ZL ZR

VR

m • ZL

Bus S Bus R

Current Inversion Occurs…

Bus S
Bank Out of Service

VFAULT

IFAULT
ÐqLine

VPRE_FAULT

Bus S
Bank In Service

VFAULT

IFAULT

ÐqLine

VPRE_FAULT

if XC > ZS + mZL



8

Current Inversion

ZS

Bus S
VS XC

(1–m) • ZL ZR

VR

XC > ZS + mZL
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230 kV System Case Study
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• Fault current limited by series capacitors

• Voltage drop across capacitor is lower than 

MOV conduction level

• Nonbypassed series capacitor exposes line 

protection elements to current inversion

Observations for Close-In 

Line-to-Line Faults

Peak MOV current of 

4.3 kA vs. 5.9 kA bypass level

MOV Performance for Close-In 

Line-to-Line Faults
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Distance Element Performance
Close-In Line-to-Line Faults
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Current Inversion

Distance Element Performance
Close-In Line-to-Line Faults
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Transient Simulation Results
Case Study One – Heavy Load
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Transient Simulation Results
Case Study Two – Light Load
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Transient Analysis
Case Study One – Heavy Load
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• Evaluate performance using RTDS testing

• Develop optimized settings

• Verify security for 

external fault 

conditions

Line Current Differential Is a 

Potential Solution
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Initial RTDS Testing
Close-In Line-to-Line Faults
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Initial RTDS Testing
Close-In Line-to-Line Faults
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Assertion time increased to 0.625 cycles with momentary dropout

Detailed RTDS Testing
Blocking Angle Decreased From 195° to 100°

Assertion time increased to 0.625 cycles with momentary dropout

Detailed RTDS Testing
Blocking Angle Decreased From 195° to 100°
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Detailed RTDS Testing
Blocking Radius Decreased From 6 to 2

Detailed RTDS Testing
Blocking Radius Decreased From 6 to 2
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• Dependable solution was found by adjusting

 Pickup value

 Blocking angle

 Blocking radius

• Negative-sequence differential elements 

cannot be used due to intentional security 

delay

Results of RTDS Testing
Line Current Differential

Differential Element Security
Adjacent Line Faults

A-phase single-line-to-ground
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Alpha Plane Security
Adjacent Line Faults

Ratio of remote/local current oscillating into the restraint region

A-phase single-line-to-ground

A-phase-to-B-phase double-line-to-ground

A-phase-to-B-phase line-to-line

Three-line-to-ground

• CT saturation was not possible for adjacent 

line faults based on analysis

• Communications channels are symmetrical

RTDS Testing Assumptions



19

• Current inversion 

 Distance and directional elements unusable

 Decreases dependability of differential elements

• Transient simulations and RTDS testing are 

necessary to evaluate relay performance 

during current inversion

Conclusion

Questions


