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Outline 
 

 The need to connect communications and protection 

 

 Analysis of protection schemes dependencies on communications 

 Line current differential protection  

 Synchrophasor-based protection and control 

 Distributed generation related protection 

 Distance protection 

 Bus blocking scheme 

 

 Conclusions 
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Introduction 
The need to connect protection and communications 

 Protection, control and communications often fall into responsibilities of 
different groups, with little or no communications and understanding  

 
 This could have been sufficient for manually operated control and 

protection in traditional radial power systems 
 

 Historically developments in communications lead to developments in 
protection, one can consider line differential protection 
 

 On-going evolution leads to grids transformation into more diverse bi-
directional systems with automated control and protection highly 
dependable on communications 
 

 Lack of interactions and understanding between protection, control and 
communication engineers is no longer appropriate nor sufficient. 
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Line Current Differential Protection 
 

• Based on Kirchhoff’s law for currents 
• Uses synchronized current samples from 2 ends of the line 
• 5 terminal system is shown 
• Dedicated or multiplexed communication channels can be used 
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Line Current Differential Protection 
Effect of Bit Errors 

 Data corruptions in communication channel result in Bit Errors, and lead to 
discarding, i.e. loosing data 

 
 Line current calculations can not be performed if data is not available  
 
 Lost of one sample leads to operation delay of 1 sample period (e.g. 5ms) 
 
 Lost of communication leads to blocking the protection scheme 
 
 Rigorous requirements are imposed on Bit Error Rate (BER) of the 

communication channels used for line current differential protection 
 
 10-12 - 10-9 during normal operation  
 10-6 during disturbance 
 10-4 when channel is blocked 



 
 
April 16, 2013 | Slide 6 

Line Current Differential Protection 
Effect of Time Synchronization Error and Accuracy 

Sum of currents at the same time is equal to 0 
• Sample times differ => incorrect calculations and operation ! 
• Sample times within expected range => min operating current defined by 

time synchronization accuracy 
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Line Current Differential Protection 
Effect of Delay Asymmetry 

• If communication system is used for time synchronization, TX / RX delays 
assumed to be symmetrical 

• Delay asymmetry translates directly into current measurement error 
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Synchrophasor-based protection and control 
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Synchrophasor-based protection and control 
Effect of one-way latency determinism 

• Data is delayed by variable time prior to arrival to destination / application 
• Telecommunication operators typically provide average not worst case delay 
• Non-deterministic one-way latency can prevent correct calculations / decisions 
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Synchrophasor-based protection and control 
Effect of communication protocol  

 Raw data are packed into telegrams or frames and packets for transmissions 
 
 Protocols are the “rules” that define data exchange, what means what 

 
 Reliable protocols, like Transport Control Protocol (TCP), establish a 

dedicated connection (connection-oriented) and use data receipt 
acknowledgements 
 

 Non-reliable protocols, like User Datagram Protocol (UDP), don’t establish a 
dedicated connection (connection-less) and don’t confirm that data was 
received. They, however, can send same data to multiple destinations 
(multicast mode) 
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Synchrophasor-based protection and control 
Effect of communication protocol  

 Traditionally TCP has been used for synchrophasor data transmissions 
between one sender and one destination (unicast mode) 
 

 Use of UDP is encouraged to enable multicast data transmissions, however 
UDP is not reliable and lead to data losses (not acceptable) 
 

 Experiments and testing with UDP have shown that reliable no loss data 
communications is possible if end device buffers are specifically tuned 

 
 Commands can still be transmitted over TCP (e.g. initiate / end data stream), 

while data can be transmitted over UDP 
 

 New IEC 61850-90-5 Technical Report that specifies transmission of 
synchrophasor data over IEC 61850 systems only uses UDP  
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Distributed generation related protection 
 

• Various protection schemes are used for systems with distributed generation 
• These commonly include interconnection protection and feeder protection 
• These schemes rely on communications to register DG presence, coordinate, etc 
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Distributed generation related protection 
Effect of communication media 

 IEC 61850 GOOSE messages could be used for coordination of protection 
schemes 
 

 These short messages are mapped into Layer 2 Ethernet, use high priority 
and multicast mode (one message sent to many destinations) 
 

 These messages can be transmitted over different media:  fiber optic, 
electrical cable, or air (wireless) 
 

 Testing conducted using WiMax wireless technology shown that some 
communication devices can not process GOOSE message “storm” without 
loosing data 
 

 A specific older profile of WiMax technology was proven to work reliably  
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Distance Protection 
Teleprotection Schemes 

 Distance protection relays are the most common relays used for 
transmission line protection because it uses simple measuring principle.  
 

 Distance protection can be performed without communications. 
 

 In most cases, communication channels between the two ends are utilized 
to improve the performance of distance protection.  
 

 Typically high voltage system faults are detected within 1-2 cycles, and are 
cleared within 5 cycles or 83 ms for 60Hz system. 
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Distance Protection 
Teleprotection Schemes 
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Distance Protection 
Teleprotection Schemes 

 There are two basic systems used for transmission line 
protection. The simplest is the directional comparison 
blocking (DCB) system. This system uses a blocking signal 
that is transmitted when the fault is outside of the 
transmission line protection zone, to prevent the remote 
end tripping for fault beyond the local terminal. 
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Distance Protection 
Teleprotection Schemes 

 Another system is the permissive system, which requires a 
signal from the remote end to give permission to trip for a 
fault. This system provides a continuous block or guard 
signal and shifts to a trip frequency to provide the 
permission. This is the frequency shift keyed (FSK) 
channel. 



 
.  
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Distance Protection 
Effect of communications performance 

 Disturbances in the telecommunication channel must 
neither simulate a command at the receiving end when no 
corresponding command signal was transmitted (security), 
nor suppress a command that was actually transmitted 
(dependability).  

 
 For digital channels: 

 Probability of an unwanted command, PUC, a 
measure of security, shall be less than 10-8 

 Probability of missing command, PMC, a measure of 
dependability, shall be less than 10-2 

 BER. The reliability of a protection command sent 
over a digital channel is related to bit errors.  
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Distance Protection 
Effect of communications performance 



Bus Blocking Scheme 

Delay setting with inst. O/C protection 
(conventional approach) 

Safety marginal, e.g. delay in 
operation due to CT saturation. 

20…40 ms 

O/C protection start delay  + 
output relay’s delay 

<40 ms 

Start delay with receiving relay + 
retarding time for the blocking 
signal *) 

<40 ms 

ALL TOGETHER 100…120 ms 

 Traditional busbar protection is 
based on upstream blocking 

 
 Dedicated hard-wired signal paths 

needed 

 Signal path delay needs to be 
considered, input and output delay 
plus the delay in auxiliary relays 

 Changes in the protection scheme 
may require re-wiring 

 Typically over 100 ms delay in the 
incoming feeder is needed 
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Bus Blocking Scheme 
GOOSE message-based 

Delay setting with inst. O/C protection 

(GOOSE approach) 

Safety marginal, e.g. delay in 
operation due to CT saturation. 

20…40 ms 

O/C protection start delay 20 ms 

Retardation time of inst. O/C 
stage blocking 

5 ms 

GOOSE delay 
(Type 1A, Class P1) 

<10 ms 

ALL TOGETHER 55…75 ms 

IEC 61850-8-1 

Yes I am! 
I’ll block the  

Inst. O/C! 
Block-PHIPTOC! 

Who is  
interested? 

PHLPTOC-start! 
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Bus Blocking Scheme 
Effect of communications performance 

 Determinism 

 High-priority processing using Priority field in IEEE 802.1Q tag 

 Heartbeat and change-driven messages upon an event 

 Data multicasting (one to a group) and multiple re-transmissions  

 Bandwidth consumption should be taken into consideration when 
designing networks  

 Redundancy 

 Rapid Spanning Tree Protocol (RSTP) ~5ms per network hop 
restoration time 

 Parallel Redundancy Protocol (PRP), no data lost 

 High-availability Seamless Redundancy Protocol (HSR), no data lost, 
typically used in ring topologies 

 
 
 



Horizontal GOOSE communication 

 The GOOSE communication link between the IEDs is supervised by 
sending data cyclically 

 When data change is detected by an IED the event is immediately sent 
to the network multiple times to ensure reception of data 

 In case of a timeout the application and the user are notified 

GOOSE data exchange 

  

T max   

e.g.   
10s   

Data   
change   
  

T min   

e.g.   
2 ms   

T max   

e.g.   
10s   

t   
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Conclusions 

 Evolving power grids become more dependable on communications, 
better interactions and understanding are required 
 

 Dependencies of various protection schemes on communications were 
analyzed 
 

 Effect of the following communication-related parameters was shows 
 
 Bit error rate 
 Time synchronization error and accuracy 
 Delay asymmetry, determinism of one-way latency 
 Communication protocol, media and profile 
 Probability of unwanted and wanted command 

 
 Each of considered schemes deserves  a separate in-depth investigation, 

further learning will benefit the industry 
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