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Overview

® Inrush currents theory:

® Transformer energization

® Voltage recovery after an external fault

® Sympathetic inrush
® Influence of inrush currents on transformer
differential:

® Harmonic restraint / blocking

® Crossed logics

® Dynamic application of restraint / blocking

® Influence of inrush currents on the rest of
protective functions
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Inrush Currents Theory
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Magnetic Flux

® Inrush currents occur because of a saturation of
the power transformer due to a DC offset in the flux

V:Nl-z—f v=Vm-sin(wt + 0)

Steady state flux DC flux = t=0
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Transformer Energization
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Damping of Flux and Imag

, dg¢ di dl(t)
vi=Nl.— v'=v—-R:-i- Ld— ¢ = _[ v(t)-dt— _[Rl(t)dt _[L

dt
g~ 0 [ VEQ-dt- j R-ic)-dt— [ LNEW gy
v | 0 i@

AL T
VVVVUV\ mwwwﬂﬂﬂﬂﬂk

- 174151 0.144 0172 019z 0224 0.23

k¥

seconds

dl(t)/dt D(t)

4 Img-lmy ) 61642081074 *[\ - j\ | % Fhoy 0383
i ol 0.117 u.l\fﬁz 0137 u.la\jﬁ.ls
4
eoonds

0.fo 012 0128/ DV V;g Uumv 025

- 017351
seconds

Name: Roberto Cimadevilla Texas A&M April 8th-11th April 2013



HarmoniLc Content of the Inrush Current

i(©)

I (1-cosa)
1(0) =Im-(cosd—-cosa), 0<O0<a, 2r-a)<0L2x
0, a<0<(27r—-a)
Im 1 . 1 . 2 .
L . 6 a =—:-[——-sin((n+1)-a)+——-sin((n—1)-a) ——-sin(na)consa]
o« T 2n T n+l n+1 n
Harmonic
an/al
a=60° a=90° a=120°
2 0.705 0.424 0.171
3 0.352 0.000 0.086
4 0.070 0.085 0.017
5 0.070 0.000 0.017
6 0.080 0.036 0.019
7 0.025 0.000 0.006
8 0.025 0.029 0.006
9 0.035 0.000 0.008
10 0.013 0.013 0.003
11 0.013 0.000 0.003
12 0.020 0.008 0.005
13 0.008 0.000 0.002
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Harmonic Content of the Inrush Current
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® In new transformers the residual flux is
closer to the saturation density increasing a
and so reducing the 2nd harmonic content

® The low 2nd harmonic normally occurs for
4-5 cycles
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CT Saturation
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Voltage Recovery after External
Fault
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Sympathetlc Inrush
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Sympathetic Inrush
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Inrush Currents Effect on
Transformer Differential
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Inrush Effect on 87T

® Magnetizing reactance is a shunt branch so inrush current
IS a differential current
® Methods commonly used to avoid operation of 87T:

® Harmonic restraint

® Harmonic blocking

® Wave-shape recognition
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Harmonic Restraint

Idiff fund n
o]
Kn: nth harmonic restraint percentage
n=23.4,5 :
1
i diff_fund_total !
! [}
! 1
1/Kn 10 ! !
)| 12 L.
Idiff harm_n RES
Operating condition:
> Id'ff h
iff _harm_n
ldiff_fund > i + i =l oo T, B) + Z—
through harmonic n=2 Kn
current restraint
restraint
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Harmonic Blocking

diff _harm _n

> Kn

Idiff _fund

Operating condition:

diff _fund

> |

diff
through
current
restraint

[ .
=1 -f(a, ) @[w < Kn]

Idiff _fund

I i arm_n
(Idiff_fund > | egt -f(a,ﬂ)) ® (Idiﬁ_fund > dff_h—_)

Kn
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Harmonic Restraint vs Blocking

. . dlff _harm_n
Harmonic Restraint Idiff_fund > I?riff X "‘Iﬂiff et - f(a, IB)"‘Z
roug armonic n=2
cr;élg?a% . restraint
Harmonic Blockin lgitt_harm_n
g (ldiff_fund > Irest f(a’ﬂ)) ® Idiff_fund > Kn

® Harmonic restraint is more secure than harmonic blocking
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Crossed Logics for Harmonic Blocking

® 1 out of 3: dependability problems with close onto single-
phase and two-phase faults

® 2 out of 3: can have dependability problems for close onto
single-phase faults. If the transformer is YD (or 3-legged YY)
and it is energized from the Y side it operates correctly

® Average:

1 [y |, »
average_an_harm_ratlo=—- dlf;_harm_an_A 4 diff _harm_2nd B 4 diff _harm_2nd _C

diff _fund _A | i _fund_B | i _fund_C
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Crossed Logics for Harmonic Blocking

® Sharing:

PhaseA 2nd harm ratiO _ Idi1‘f_harm_2nd_A + Idiff_harm_an_B + Idiff_harm_2nd_C
- - - diff _fund _A

PhaseB 2nd harm ratiO _ Idiff_harm_2nd_A + Idi1‘f_harm_2nd_B + Idiff_harm_2nd_C
- - - diff _fund _B

PhaseC _2nd _harm _ratio = ar_nam_zna_a * lair_nam_2na_s *

diff _fund _C

diff _harm_2nd _C

3phase 2nd harm ratiO _ Idiff_harm_2nd_A + Idif‘f_harm_an_B + Idi1"f_harm_2nd_C

Idiff _fund _A + Idif'f _fund _B + Idiff _fund _C

® The harmonic blocking percentage should be increased (25%)

® Time for cross-blocking: 4-5 cycles
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Dynamic Harmonic Restraint / Blocking

® Harmonic restraint / blocking can reduce the dependability
for internal faults with CT saturation

® Use of unrestrained differential unit

® Use of dynamic harmonic restraint / blocking: based on an
external fault detector:

® One detector based on idif/irest ratio

® Two directional comparison units: phase and positive-sequence
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Detector based on idif /
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Directional Comparison

INTERNAL FAULT EXTERNAL FAULT
Currents “in phase” Currents “out of phase”
larg(12)-arg(11)|<90° larg(12)-arg(11)|>90°

® First unit is based on phase currents

® Second unit is based on positive-sequence pure fault values
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Dynamic Application of 2" Harmonic
Restraint / Blocking

® Harmonic blocking / restraint is always applied during a
settable time when the transformer energization is detected

® Once the transformer has been energized the harmonic
restraint / blocking can be inhibited during 3 cycles if:
® Afault detector has activated
® The units comprising the external fault detector do not indicate
an external fault condition (2 out of 3 logic is used)
® Atter the 3 cycles the harmonic restraint / blocking cannot
be inhibited again during a settable time

® Both for an external fault and for the energization of a
parallel transformer an external fault condition will be detected
prior to the inrush of the protected transformer, therefore the
harmonic restraint / blocking will be applied
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Dynamic Application of 2" Harmonic
Restraint / Blocking

® Undervoltage units can also be used to complement the
logic, inhibiting the 2" harmonic restraint / blocking if they
pick-up (75% of Vrated can be used)

® An undervoltage unit per phase will be used
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Dynamic Application of 5t" Harmonic
Restraint / Blocking

® Underexcitation units based on V/f ratio will be used to
inhibit 5" harmonic restraint / blocking: they will pick-up if
Vit<k*Vrated/frated

® An underexcitation unit per phase will be used
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Simulated and Real cases
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Energization with low 2"9 harmonic (real case)
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Close onto AG Fault (simulated case)

YNynd 400 kV / 220 kV / 33 kV
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Close onto BC Fault (real case)

YNynd 220 kV /132 kV / 30 kV
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Sympathetic Inrush
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Sympathetlc Inrush
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Inrush Currents Effect on Other
Protection Functions
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Influence of Inrush Currents on 50/51

® The most affected units are the ground ones as they are
set more sensible than the phase ones

® The following connection groups allow the flow of inrush
ground current (energization done from the primary: YNyn,
YNy, YD, 3 legged YY

® The following groups do not allow the flow of inrush ground

current: Yyn, Yy, Dyn, Dy
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Influence of Inrush Currents on 50/51

®2nd Harmonic blocking / restraint is normally used
®Cross-blocking is recommended for instantaneous units
®Unrestrained units are also recommended to increase the
dependability

®When the inrush current is mixed with the load current the
2"d harmonic content will be lower

®The sum current in a sympathetic inrush will have low 2nd
harmonic content. If overcurrent units operate with this
current their restraint will be very low. Third or fifth harmonic
restraint can help

®|f pilot schemes are used care has to be taken with DCB
and POTT+weak infeed logic because of CT saturation
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Inrush Currents for a POTT+Weak Infeed

Downstream transformer energization (real case)

157

CT saturatig_n

geconds
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Influence of Inrush Currents on 87B / 87L

® CT saturation can affect the security of 87B and 87L units

® The restraint current is normally low so the tendency to
operate is high

® The use of the described external fault detector will increase

the security
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Influence of Inrush Currents on 21

® Affected when:

® Adistance zone is used as a back-up of the transformer
differential protection

® Adistance zone is used to protect line + transformer

® A distance protection is used to protect a line with tapped
transformers

® Use of 2" harmonic blocking / restraint

® Harmonic blocking / restraint can be inhibited with
undervoltage units or with overcurrent units
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Conclusions

® Harmonic restraint is more secure than harmonic blocking

® The low second harmonic content of modern transformers
requires the use of harmonic restraint / blocking crossed logics

® For transformers with a delta winding (either real or phantom)
energized from the wye winding/s the “two out of three™ crossed
logic provides good balance between security and dependability

® For other type of transformer connection group or in a wye-
delta transformer if the energization is done from the delta side the
harmonic sharing logic is considered the best one. In order to
Increase the dependability a three-phase sharing second harmonic
ratio is recommended.
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Conclusions

® The logic that inhibits the harmonic restraint / blocking allows
accelerating the trip for an internal fault that occurs once the
transformer is energized. It is based on an external fault

detector consisting of three units:

® Detector based on idif / ires ratio

® Phase directional comparison unit

® Pure fault positive-sequence directional comparison unit
® CT saturation during inrush can affect any type of differential
relay and also overcurrent units working with a DCB or POTT

with a weak infeed logic. The use of an external fault detector
as the one described in this paper will increase the security of

the differential units.
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