Applying Dependable and Secure Protection With Quadrilateral Distance Elements

Kanchanrao Dase, Armando Guzmán, Steven Chase, and Brian Smyth Schweitzer Engineering Laboratories, Inc.

Agenda

- Factors affecting the security of reactance element
 - Nonhomogeneous network correction angle
 - VT and CT steady-state angle errors
 - Line transpositions
 - Line charging currents
 - Unbalance operating conditions
- Determining the best tilt angle and corresponding R_{SET}

Power flow direction affects apparent impedance

Analyzing through power system model

220 kV∠0°

220 kV∠−45°

Calculating the loop correction angle

220 kV∠0°

220 kV∠−45°

$$\theta_{L_LOAD}|_{m=1} = \min\left[\arg\left(\frac{I_F}{I_L}\right) \quad \forall \quad 1 \le R_F < 100\right]$$

Calculating the loop correction angle

Calculating the nonhomogenous correction angle for lines with low-impedance angle

Calculating the nonhomogenous correction angle for lines with low-impedance angle

Calculating the nonhomogenous correction angle for lines with low-impedance angle

VT and CT steady-state error affects polarizing current angle

$$\Psi_{m_{IT}ANG} \approx \cot\left(\theta_{V} - \theta_{I_{F}}\right) \cdot \left(\theta_{V_{ERR}} - \theta_{I_{POL}ERR}\right)$$

	Ideal Phasors	Phasors With Angle Errors	$\boldsymbol{\theta}_{IPOL_ERR}$
Phase Currents	I _A = 720∠−49°	I _A ' = 720∠−47°	-
	I _B = 574∠−112°	I _B ' = 574∠−110°	_
	I _C = 590∠126°	I _C ' = 590∠124°	-
Corresponding	3 • I ₂ = 642∠−101°	3 • I₂' = 632∠−103°	−2°
Polarizing Quantities	3 • I ₀ = 605∠−99°	3 • I₀' = 578∠-94°	5°
	I _L = 1006∠−73°	I _L ' = 1004∠−69°	4°

Line charging current affects polarizing current angle

Polarizing Quantity Angle With Respect to Total Fault Current Angle	With Line Capacitance (1)	Without Line Capacitance (2)	(1) – (2)
$\angle 3 \cdot I_2 - \angle I_F$	8.6°	9.1°	-0.5°
$\angle 3 \bullet I_0 - \angle I_F$	10.4°	10.8°	-0.4°
$\angle I_L - \angle I_F$	36.8°	35.8°	1°

Line transposition affects polarizing current angle

Phasor	Magnitude (A Primary)	Angle (Deg.)	Corresponding Reactance Element
3 • I _{0_UB}	69	35	-
3 • I _{2_UB}	223	25	—
I _{L_UB}	821	26	-
3 • I _{2_FLT}	888	7	0.23
3 • I _{0_FLT}	615	5	0.17
I _{L_FLT} (with −7° tilt)	1793	3	0.10
I _{FLT}	4507	0	_

Overreech (nu) in the

Compensating for factors affecting polarizing current angle

II.

	Tilt Angle C Eler	eactance h	
Factors Affecting Polarizing Current Angle	Negative-Sequence Current	Zero-Sequence Current	Loop Current
Network nonhomogeneity	-10°	-12°	NA
Load	NA	NA	-34°
VT and CT (steady-state angle errors)	-7°	-7°	-7°
Line charging current	-0°	-0°	-1°
Untransposed line	-2°	-1°	0°
Unbalanced operating conditions	0°	0°	0°
Total Tilt	-19°	-20°	-42°

Determining the best tilt angle corresponding to $R_{\mbox{\scriptsize SET}}$

Determining the best tilt angle corresponding to $R_{\mbox{\scriptsize SET}}$

Determining the best tilt angle corresponding to R_{SET}

Conclusions

- Factors that have significant effect on polarizing current angle
 - Nonhomogeneous network correction angle
 - VT and CT steady-state angle errors
 - Unbalance operating conditions
- Determining best tilt angle and corresponding R_{SET}

Questions?