Slingshot Disconnection!

Understanding the effect of disconnecting an un-stabilized ungrounded source

The Authors

Texas A&M Relay Conference

1. Commonwealth Associates, Inc

2. Energy Emissions Intelligence

3. Eversource Energy, Inc

Introduction - Background

Y-Grounded primary – Broken delta secondary

- Ungrounded system applications
- Allows first ground detection
- Detects faults when there is no fault current

Texas A&M Relay

Conference

Why ungrounded?

Historical Knowledge

1920-1940 Study of Y-grounded – Broken Delta Instabilities

Impact of Imbalance

Shunt capacitance imbalance creates a constant phase voltage imbalance

Conclusion from First Version

Need to quantify how to size based on unbalance

EMT model used

Find estimation Function

2 parts in the estimations

$$3V0 = f_1(C_u) \cdot f_2(C_a)$$

Function of
capacitance imbalance
Capacitance sweep
Function of
Capacitance sweep

To find estimation function

Texas A&M Relay Conference

Need to Sweep Shunt Capacitance

Varied shunt capacitance Imbalance

$V_{2VOW} = a \cdot \ln(b \cdot C_n + c) + d$	t	а	b	С	d	Maximum error from all samples
$V_{3V0pu} = \frac{a \cdot C_u}{(b + C_u^c)^{\frac{1}{c}}} + d$	Logarithmic	0.626073	0.244194	4.722191	-1.241454	23.58%
	Fraction of the power	3.042784	304.87199	1.00000015	-3.3605 ·10 ⁻⁹	2.68·10 ⁻⁹ %
	Polynomial	2.712278 ·10 ⁻¹	5.893840 ·10 ⁻³	-6.663924 ·10 ⁻³	2.870167 ∙10 ⁻⁹	3.1%*

 $V_{3V0pu} = a \cdot C_u^3 + a \cdot C_u^2 + a \cdot C_u + d$

* Samples between 100 to 1000% capacitance unbalance.

Need to Sweep Shunt Capacitance

F2 - Resistor values sweeps

While average capacitance is constant

Average Shunt Capacitance	Phase A and B	Phase C	
1 nF	0.222 nF	2.56 nF	
2 nF	0.222 nF	5.11 nF	
4 nF	0.888 nF	10.22 nF	
8 nF	1.777 nF	20.444 nF	
16 nF	3.55 nF	40.88 nF	

Average Shunt Capacitance	а	b	С	Maximu m Error
1 nF	-0.00618	23.218	1.8299	1.41%
2 nF	-0.0084	11.526	1.834	1.38%
4 nF	-0.0101	5.7233	1.847	1.33%
8 nF	-0.0104	2.8558	1.8741	1.14%
16 nF	-0.00994	1.4230	1.9021	0.92%

$$V_{3V0norm} = a + \frac{r}{(b^c + r^c)^{\frac{1}{c}}}$$

F2 – Simplify some parameters

Average Shunt Capacitance	а	b	С	Maximum Error
1 nF	0	24.968	2	1.93%
2 nF	0	12.4937	2	1.94%
4 nF	0	6.2229	2	1.86%
8 nF	0	3.0832	2	1.59%
16 nF	0	1.5197	2	1.29%

Texas A&M Relay Conference

r

 $r' + r^2$

600

 c^{2}

V_{3V0norm}

The performance

Example of Resistor sweep fonction against simulated data

Estimate the resistor Size

 V_{3V0pu} is the desired content of $3V_0$ per unit of the line-to-line voltage.

Conclusion

When Shunt capacitance imbalance is large

The resistor sizing is **not only** about **stabilization**

We need to **reduce the voltage imbalance** to **differentiate** faulted and non-faulted conditions.

We have created **mathematical estimations** that allow us to size the resistor accordingly.