An Implementation of Multiple Setting groups based Adaptive Protection for Radial Distribution Feeder

Primary author & presenter:

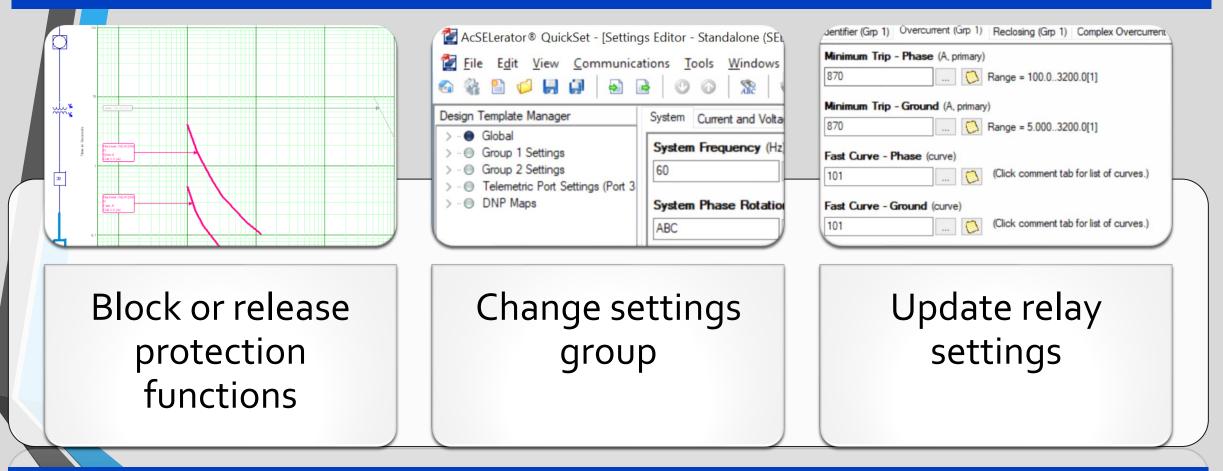
Tapas Kumar Barik, tbarik@epri.com

Acknowledgement

- Adaptive Protection to Enable Deployment of High Penetrations of Solar PV (PV-MOD) project
- Special thanks to Co-authors:
 - PPL Electric Utilities: Pei Chan
 - Electric Power Research Institute (EPRI): Aadityaa Padmanabhan, Mobolaji Bello, Sean McGuinness

Background on DOE PV-MOD Project

Develop vendor-independent adaptive protection (AP) designs


Demonstrate advanced application of the new models for automated assessment and design of adaptive distribution protection schemes

Demonstrate correct operation using simulations and lab-tests of siteand hardware-specific implementations

Deploy and test protection schemes on various types of networks

Adaptive Protection

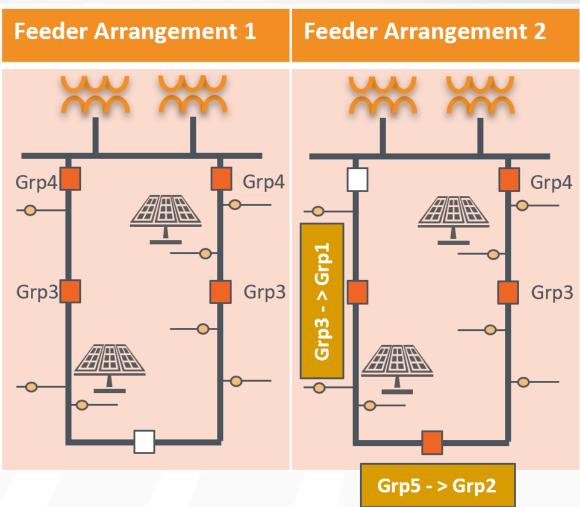
Broad definition: Anything that changes how protection responds to faults

Triggers can be commands, time or measurements

Challenges for SG change

Understanding of minimum credible fault current magnitudes and maximum load flow essential

Knowledge of all normal and abnormal grid conditions necessary


May not be possible to adequately protect the grid for every feeder configuration Optimal settings may need feeder specific considerations – some feeder configurations may be more frequent or important than others and the choice of settings will reflect that

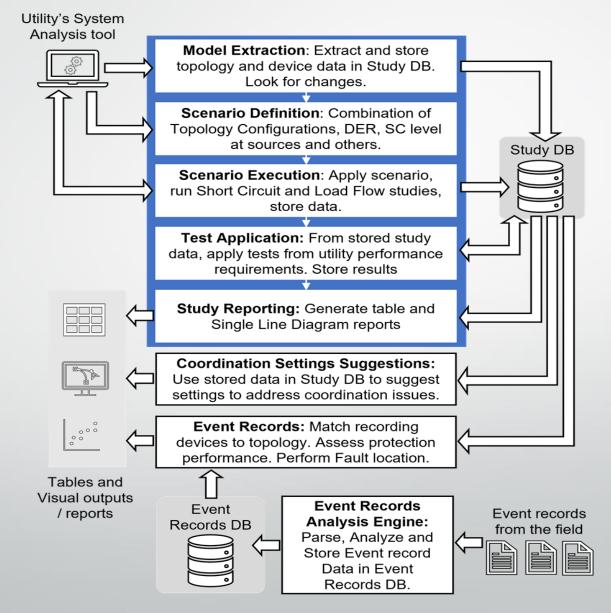
Needs appropriate system operator training and DMS design Radial Feeder Adaptive Protection Overview

- Centralized Approach
- Consider a standard set of settings for all reclosers
- Determined based on largest downstream fuse size and minimum fault current level
- Decreases engineering effort
- Simplifies deployment strategy
- DMS determines which settings group to use based on current feeding arrangement
- Group change commands sent automatically/manually

Radial Feeder Adaptive Protection Overview

- Microprocessor relays support multiple settings groups
- Modern ADMS systems can perform coordination studies
 - Recommend appropriate settings based on system configuration
- EPRI's Distribution Protection Analysis Toolkit (DPAT) can suggest optimal settings for different system configurations
- Both these approaches involve large amounts of engineering effort

Distribution Protection Analysis Toolkit (DPAT) Automatically analyze grids to determine optimal settings groups

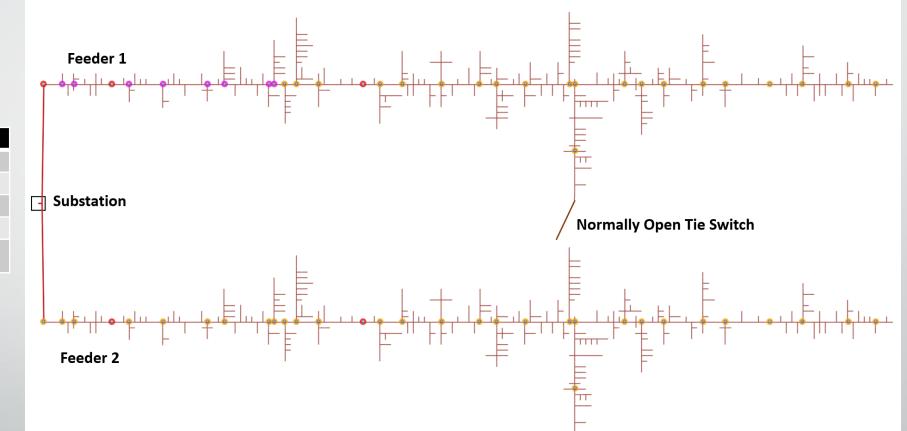

Can help in identifying mis-coordinated relays, fuses and reclosers

Under a wide range of scenarios including with/without DER, different feeding arrangements, etc.

Framework is integrated into common distribution grid Short Circuit and Power Flow Analysis tools

Makes use of available Application Programming Interfaces (APIs) to automate analyses and data extraction

Framework

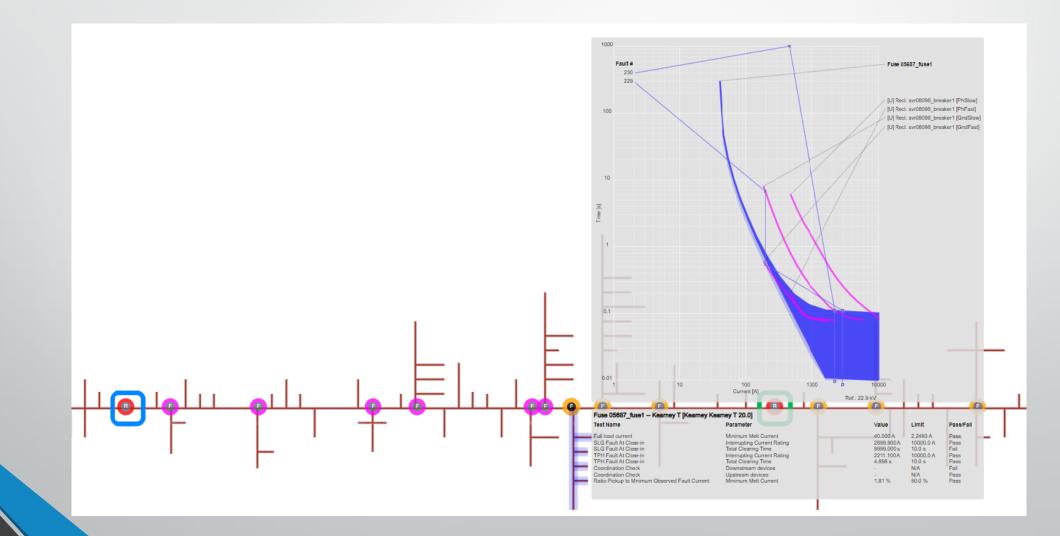


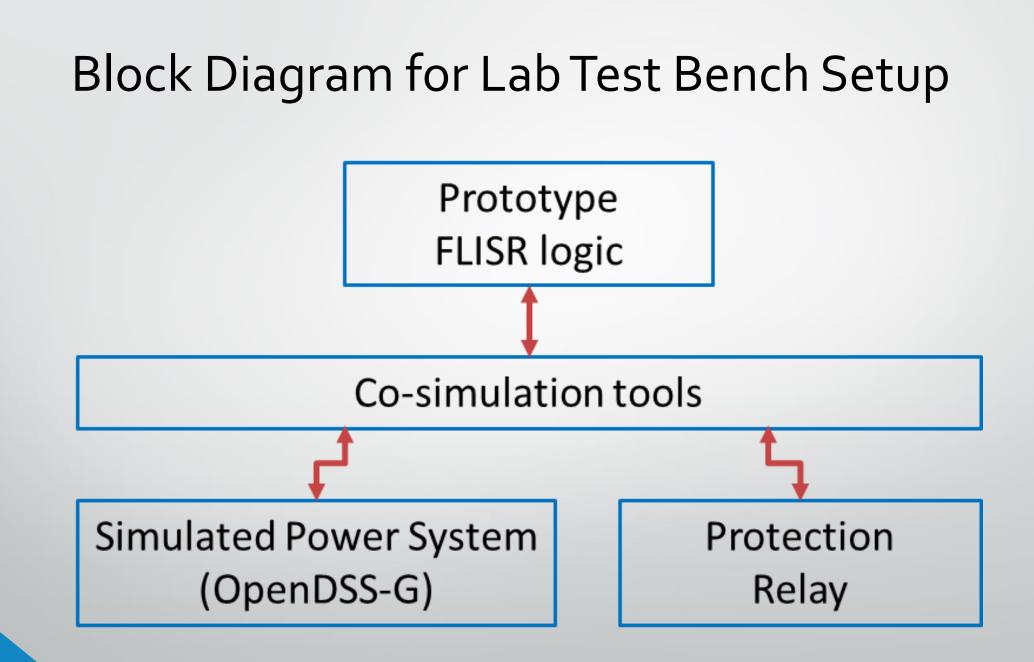
Ovalle, A.; McGuinness, S.; Padmanabhan, A.; Rocha, C.; Bannon, J.; Kistler, M.; Doodnauth, A.: 'EPRI distribution protection analysis toolkit', IET Conference Proceedings, 2023.

Key tests

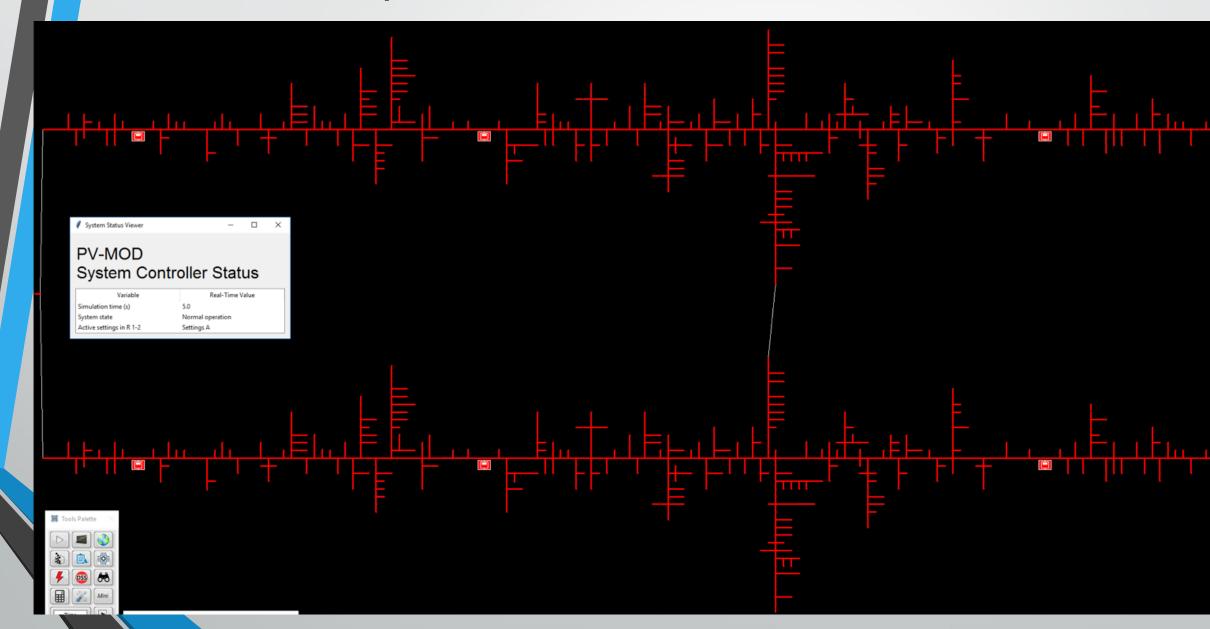
- Protection device Overcurrent pickup settings are checked against
 - Upstream and downstream conductor ratings which is intended to analyze loadability limitations against protection device overcurrent pickups
 - Full Load Power Flow currents to check if devices would trip for Load current.
- Protection device observed fault currents against a percentage of the interrupting capability of devices defined by the user.
- Primary/backup protection coordination checks.
- Sequence of Operations.
- Overcurrent Pickup sensitivity: Compute ratio of minimum fault current in protection zone against overcurrent pickup.

Network Model

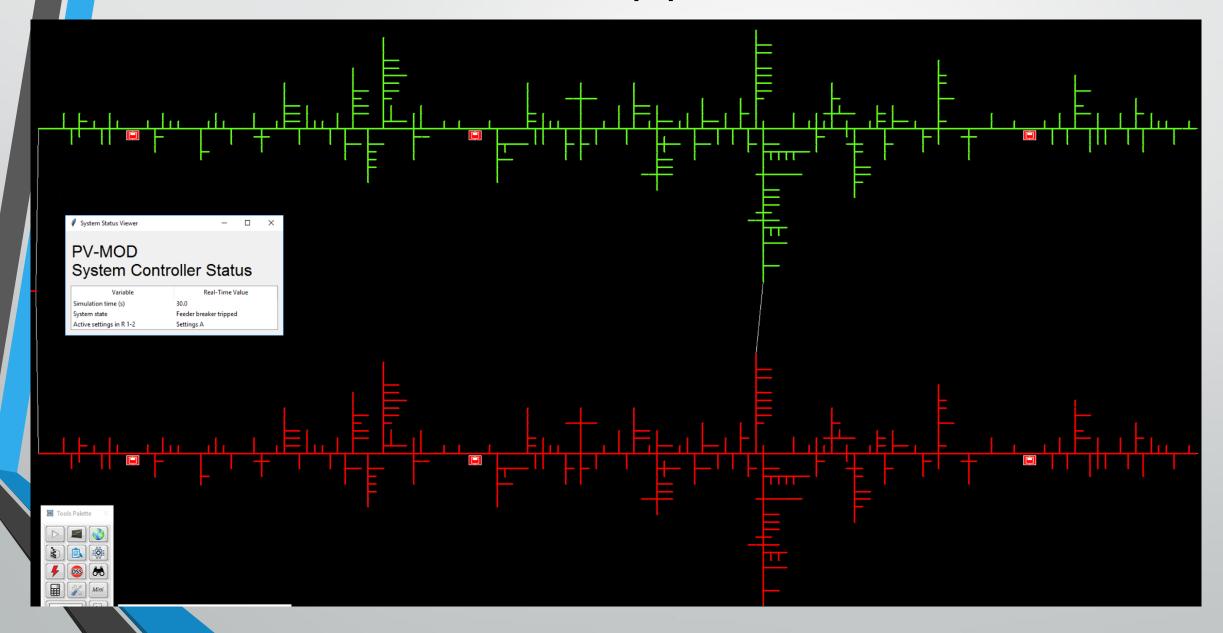


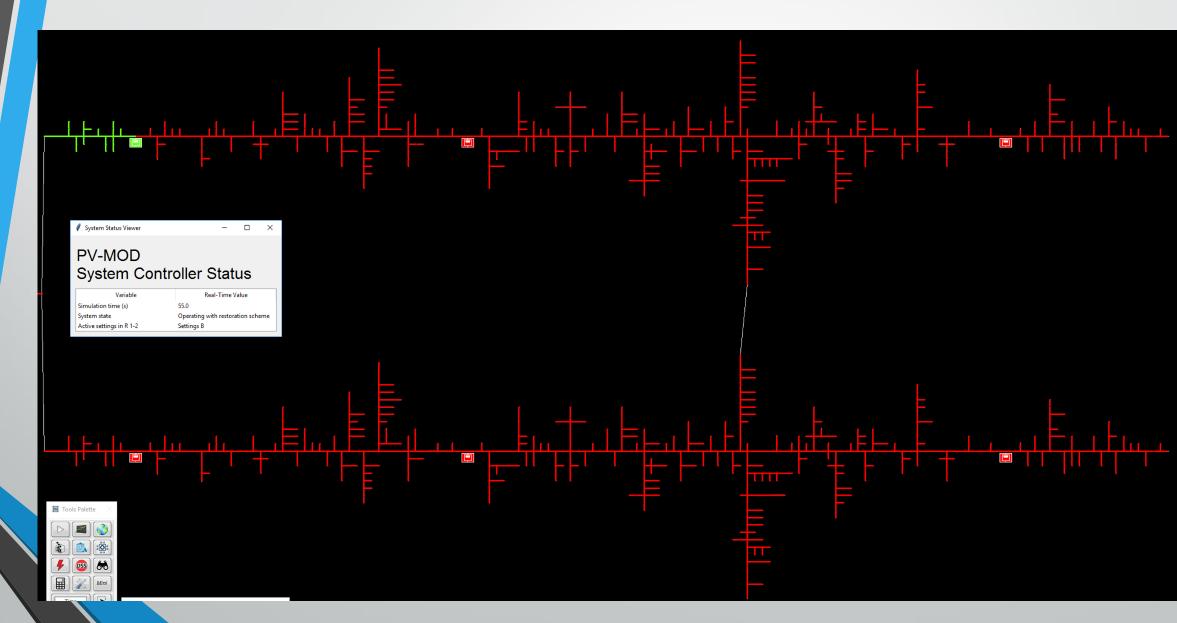

Description	Value					
Line-Line voltage	13.2kV					
PV systems/DER included	Yes					
PV specs	o.38 kV, 360 kVA each					
Total PV generation	10.7 MW					
Total load on both feeders	2.24 MW + 0.94 MVAr					

Protection analysis: Tabular Reports


De	vice Name	Device Type	Model						Rated Current (A)	Interrupting Rating (A)		Test Result
028	348 fuse	Fuse	Kearney T [Kearney Kearne	Kearney T [Kearney Kearney T 65.0]					65.0 A	10000.0 A		Fail Coordination Check
028	3 <u>48_fuse1</u>	Fuse	Kearney T [Kearney Kearney T 65.0]					2.9 kV	65.0 A	10000.0 A		Fail Coordination Check
<u>028</u>	<u>895 fuse</u>	Fuse Kearney T [Kearney Kearney T 65.0]					2	2.9 kV	65.0 A	10000.0 A		Fail Coordination Check
028	<u> 195 fuse1</u>	Fuse Kearney T [Kearney Kearney T 65.0]					2	2.9 kV	65.0 A 10000.0 A			Fail Coordination Check
<u>029</u> 029	Test Name		Test Parameter	Test Value	Test Type	Test	Pass/Fail	ail Test Result D	escription			Fail Coordination Check
						Limit						Fail Coordination Check
029	Full load current		Minimum Melt Current	130.0 A	Must Be greater than	125.41 A	Pass	Fuse minimur	Fuse minimum melt current greater than full load current			Fail Coordination Check
<u>029</u>	SLG Fault At Close-in		Interrupting Current Rating	2351.0 A	Must be less than Rating of	10000.0 A	Pass	N/A	N/A			Fail Coordination Check
<u>029</u>	SLG Fault At Close-in		Total Clearing Time 9999	9999.0 s	0 s Must be less than	10.0 s Fai	Fail		line.svr08097_breaker1 trips at t=9999.0 within 0.3s coordination margin			Fail Coordination Check
<u>029</u>			Total Cleaning Time	3333.0 5		10.0 5	ran	coordination				Fail Coordination Check
<u>029</u>	TPH Fault At Close-in		Interrupting Current Rating	2160.8 A	Must be less than Rating of	10000.0 A	Pass	N/A				Fail Coordination Check
029	023 031 TPH Fault At Close-in 031 Coordination Check		Tatal Classica Time	0000 0 -		10.0 s	Fail	line.svr08097	line.svr08097_breaker1 trips at t=9999.0 within 0.3s		-	Fail Coordination Check
030			Total Clearing Time	9999.0 s	s Must be less than		Fall	coordination margin				Fail Coordination Check
030			Downstream devices	-9998.902	Curve should coordinate with upstream and N/A		Fail	Miscoord. with: Recloser svr08098_breaker - fuse mmt curve / recloser slow curve			Fail Coordination Check	
<u>03(</u>			3	5	Curve should coordinate with upstream and			Tube Inne cu				Fail Coordination Check
030	Coordination Check		Upstream devices	1.27 s	downstream devices		Pass	Coord. with: F	ecloser svr08097_breaker			Fail Coordination Check
031	Ratio Pickup to Minim	um Observed	Minimum Melt Current	6.02 %	Must be less than	50.0 %	Pass					Fail Coordination Check
031	Fault Current											Fail Coordination Check

Protection analysis: Single Line Diagram Reports




Lab Implementation (Pre-fault state)

Isolation of fault by protection device

System Reconfiguration by FLISR logic

Additional Onsite tests

- DNP3 commands over LTE network sent at utility site.
- Commands were sent to a microprocessor relay located in a laboratory a little over 2 miles away from the utility control center by an operator.
- Communication latency inherent to public LTE networks did not pose a challenge to the scheme.
- Associated costs will be lower when compared to schemes that may require optical fiber communication channels

Conclusions

- Implementation of DMS and communication interface over DNP3 tried successfully.
- A reliable communication channel is essential to deliver the commands from the control center to the individual relays and reclosers.
- Thorough analysis of the system on which this scheme is to be implemented is needed to ensure that the right set of standard settings are chosen.
- Some form of automation tools might be beneficial to perform the multitude of coordination studies needed to determine the appropriate protection settings.

Ongoing/Future work

- Research on automating the sending of the settings group change command by the DMS/SCADA system as real-time DER output changes
- Trial scheme with utility partner
- Determine the right order in which relays/reclosers are issued the settings group change command

Thank You & Questions?