

77th Annual Conference for Protective Relay Engineers March 25-28, 2024

Application of Standard 87T Differential Protection on Phase-Shifting Transformers

Z. Gajić, G. Neise, K. de la Porte, M. Kockott, B. Vasudevan; Hitachi Energy

D. Seifert; J. Neuhaus, TenneT TSO GmbH, Germany

E. Chen; Consolidated Edison Inc., NY, USA

Introduction

- Standard two-winding 87T protection
 - principle of operation, typical settings
- Self-adapting differential protection for PSTs
 - principle of operation, typical settings
- Customer TenneT: testing and pilot installation
- Customer ConEd: selection requirements and commissioning recording
- Conclusions

- A phase-angle shift Θ occurs between the no-load voltages and between the through-going currents on the two sides of the transformer
 - standard two-winding three-phase power transformers introduce a fixed phase-angle shift Θ of n*30° (n=0, 1, 2, ..., 11) n is defined by the transformer vector group at manufacture
 - phase shifting transformers introduce a variable phase-angle shift Θ, for example ±24° in total, having ±32
 OLTC steps of approximately 0.75° per step

- 87T transformer differential protection factors to consider
 - transformation (turns) ratio; winding type; vector group; flow of zero sequence current
- Solution
 - bring all current magnitudes to the same magnitude reference (magnitude compensation)
 - align all current phase angles to the <u>same phase reference</u> (phase-angle compensation)
 - phase reference side no rotation of currents
 - non phase reference side rotate currents to align with the phase reference side currents
 - eliminate the zero-sequence currents (that can flow on only one side)

- Microprocessor relays matrix equation
 - all currents/voltages shown below are in primary values

- where
 - |ID_A| = |DCCA_W1 + DCCA_W2|
 - ID_B| = |DCCB_W1 + DCCB_W2|
 - |ID_C| = |DCCC_W1 + DCCC_W2|

- A and B are 3X3 matrices
 - the elements of A and B depend on
 - winding connection type, i.e. wye or delta
 - transformer vector group, DABY (Dyn1), DACY (Dyn11), etc.
 - whether the subtraction (elimination) of zerosequence current is enabled or not
 - the selected phase reference side
 - matrix multiplication
 - phase reference side introduces no phase shift in the currents
 - non phase reference side phase shifts the currents to align with the phase reference side
 - subtract zero-sequence if required

• Settings example (microprocessor relay): Dyn1 (DABY) transformer

- typical 87T function settings to set the transformer details
 - V_{rated_W1}
 - I_{rated_W1}
 - V_{rated_W2}
 - I_{rated_W2}
 - W1 connection DELTA
 - W2 connection WYE
 - W2 clock position 1 'o clock with respect to W1
 - W1 zero-sequence Off/On subtraction
 - W2 zero-sequence Off/On subtraction

Transformer differential 87T theoretical overview

 Strict rules exist only for the phase-angle shift between the sequence components, and not the individual phase quantities

Transformer differential 87T theoretical overview

- $ID_{PS} = IPS_{W1} + Ratio^{*}e^{j\Theta} IPS_{W2}$
- $ID_NS = INS_W1 + Ratio^*e^{-j\Theta} INS_W2$
- ID_ZS = IZS_W1 + Ratio*IZS_W2

$$M(\Theta) = \frac{1}{3} \begin{bmatrix} 1+2*\cos(\Theta) & 1+2*\cos(\Theta+120^\circ) & 1+2*\cos(\Theta-120^\circ) \\ 1+2*\cos(\Theta-120^\circ) & 1+2*\cos(\Theta) & 1+2*\cos(\Theta+120^\circ) \\ 1+2*\cos(\Theta+120^\circ) & 1+2*\cos(\Theta-120^\circ) & 1+2*\cos(\Theta) \end{bmatrix}$$

- $M(\Theta)$ matrix does not subtract the zero sequence currents
- $MO(\Theta)$ matrix to be used when the zero sequence currents must be subtracted

$$MO(\Theta) = \frac{2}{3} \begin{bmatrix} \cos(\Theta) & \cos(\Theta+120^{\circ}) & \cos(\Theta-120^{\circ}) \\ \cos(\Theta-120^{\circ}) & \cos(\Theta) & \cos(\Theta+120^{\circ}) \\ \cos(\Theta+120^{\circ}) & \cos(\Theta-120^{\circ}) & \cos(\Theta) \end{bmatrix}$$

- Dyn1 (DABY) transformer
 - delta-winding (W1) as the phase reference

$$\begin{bmatrix} ID_A\\ ID_B\\ ID_C \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} IA_W1\\ IB_W1\\ IC_W1 \end{bmatrix} + \frac{V_{rated_W2}}{V_{rated_W1}} * \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & -1 & 0\\ 0 & 1 & -1\\ -1 & 0 & 1 \end{bmatrix} * \begin{bmatrix} IA_W2\\ IB_W2\\ IC_W2 \end{bmatrix}$$

$$IC_W2$$

$$IC_W2$$
no zero-sequence subtraction is required, so use the M(0°) matrix \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}
use matrix M0(30°) as it is necessary to subtract the zero-sequence = 0.577 & 0.000 = 0.577 & 0.577 & 0.577 = 0.577 & 0.5

• Dyn1 (DABY) transformer

but

- wye-winding (W2) as the phase reference

$$\begin{bmatrix} ID_{-A} \\ ID_{-B} \\ ID_{-C} \end{bmatrix} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} * \begin{bmatrix} IA_{-W1} \\ IB_{-W1} \\ IC_{-W1} \end{bmatrix} + \frac{V_{rated_{-W2}}}{V_{rated_{-W1}}} * \frac{1}{3} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} * \begin{bmatrix} IA_{-W2} \\ IB_{-W2} \\ IC_{-W2} \end{bmatrix}$$

rotate -30° clockwise

there is no zero-sequence in the measured currents, but anyway can use the MO(-30°) matrix
$$\begin{bmatrix} 0.577 & 0.000 & -0.577 \\ -0.577 & 0.577 & 0.577 \end{bmatrix}$$
use matrix MO(0°)

as it is necessary to subtract the zero-sequence sequence 0.000 & -0.577 \\ -0.333 & 0.667 & -0.333 \\ -0.333 & 0.667 & -0.333 \\ -0.333 & 0.667 & -0.333 \\ -0.333 & 0.667 & -0.333 \end{bmatrix}

sequence

Phase shifting transformer differential protection

- 87T for PST
 - 87T protection that requires voltage measurement (needs VTs on the S- and L-sides single-phase or three-phase)
 - has on-line measurement of phase-angle shift and transformation ratio (PSTs have varying phase-angle shift and maybe also varying ratio)
 - is suitable for any PST regardless of its construction (symmetrical or asymmetrical; single-core or double-core)
 - does not require OLTC position
 - is similar to the standard 87T function for two-winding transformers

Phase shifting transformer differential protection

- 87T for PST
 - Fundamental frequency differential currents

$$\begin{bmatrix} ID_A \\ ID_B \\ [ID_C \end{bmatrix} = M0(0^{\circ}) * \begin{bmatrix} IA_W1 \\ IB_W1 \\ IC_W1 \end{bmatrix} + Ratio * M0(\Theta) * \begin{bmatrix} IA_W2 \\ IB_W2 \\ IC_W2 \end{bmatrix}$$
$$IC_W2 \end{bmatrix}$$
S-winding = W1 L-winding = W2

- where
 - Θ is the negative of the actual phase-angle shift across the PST (in degrees)
 - Ratio is the actual PST transformation ratio
 - W1 is the reference side for current magnitude (W2 currents are transferred to W1 magnitude by the ratio factor) and for phase-angle shift (W2 currents are rotated by angle Θ to align with the W1 currents)
 - M0 matrices subtract the zero-sequence currents if this subtraction is not required, can then use the M matrices
 - two typical situations when the zero-sequence currents must be subtracted on both sides:
 - the PST incorporates a closed tertiary delta-winding, the PST is of an asymmetrical design

• 87T for PST

- continuously performs on-line estimation of transformation ratio and phase-angle shift

Complex Current Ratio (CCR) =
$$\frac{-I_{W2}}{I_{W1}} = \frac{|I_{W2}|}{|I_{W1}|} e^{j(\angle I_{W2} + 180^\circ - \angle I_{W1})}$$

= $|CCR| e^{jI_Angle}$
 $I_Ratio = \frac{1}{|CCR|}$

 I_{W1} and I_{W2} are the positivesequence current phasors from the two transformer sides

Complex Voltage Ratio (CCR) =
$$\frac{V_{W2}}{V_{W1}} = \frac{|V_{W2}|}{|V_{W1}|} e^{j(\angle V_{W2} - \angle V_{W1})}$$

= $|CVR| e^{jV_Angle}$

V_{W1} and V_{W2} are the selected voltage phasors (one from each side)

Phase shifting transformer differential protection

- pre-programmed rules determine which of the on-line estimated values are used
 - if both W1 and W2 positive-sequence current magnitudes ≥ 10% of I_{rated}, the values from the current calculation are used
 - if either positive-sequence current magnitude < 10% of I_{rated}, only then are values from the voltage calculation used

- 87T for PST
 - negative-sequence differential function

```
ID_NS = INS_W1 + Ratio*INS_W2*e^{-j\Theta}
```

- where
 - ID_NS is the negative-sequence differential current phasor, and INS_W1 and INS_W2 are the W1 and W2 negative-sequence current phasors
 - the provided features are equally applicable to the 87T for PST as for the standard transformer 87T

Phase shifting transformer differential protection

- Settings
 - Typical settings for standard 87T
 - V_{rated_W1}
 - Irated_W1
 - V_{rated_W2}
 - Irated_W2
 - W1 connection DELTA
 - W2 connection
 WYE
 - W2 clock position 1 'o clock
 - W1 zero-sequence Off/On subtraction
 - W2 zero-sequence Off/On subtraction

- Typical settings for 87T for PST
 - V_{rated_W1}
 - I_{rated_W1}
 - V_{rated_W2}
 - I_{rated_W2}
 - W1 zero-sequence Off/On subtraction
 - W2 zero-sequence Off/On subtraction
 - W1 and W1 voltage input selection

Phase-shifting transformer differential protection

- Settings
 - Typical settings for standard 87T
 - mimimum pickup sensitivity
 - restrained characteristic
 - high-set unrestrained trip level
 - 2nd / 5th harmonic block / restrain levels
 - cross block On / Off
 - negative-sequence function settings

- Typical settings for 87T for PST
 - mimimum pickup sensitivity
 - restrained characteristic
 - high-set unrestrained trip level
 - 2nd / 5th harmonic block / restrain levels
 - cross block On / Off
 - negative-sequence function settings

Customer: TenneT TSO GmbH, Germany

- Secondary injection testing using a test set
- Secondary injection of simulated external and internal fault conditions
- Pilot installation of the 87T-PST (since March 2021)
 - existing dual-core, symmetrical PST having the following rated data:
 - 1200MVA; 400/400kV; 50Hz; ±24° (32 OLTC positions in advance direction, and 32 OLTC positions in retard direction, with an advance-retard switch due to the large number of taps)

- PST has operated at various loads and OLTC positions, as well as different positions of the advanced-retard switch
- several primary faults have happened during this time in the vicinity of the PST
- the 87T-PST differential protection has remained stable

- 87T-PST testing during new PST FAT at the transformer factory
 - same PST type as where pilot was installed
 - same analog input arrangement as for pilot
 - all 65 tap positions were checked under load by tapping from position 32A to position 32R every tap transition was recorded

Customer: TenneT TSO GmbH, Germany

• 87T_PST testing during new PST FAT at the transformer factory – tap change under full load

Customer: TenneT TSO GmbH, Germany

• 87T_PST testing – in-service PST, single-pole opened on S-side (PST on tap 5 advance = 3.75°)

Customer: ConEd, NY, USA

- PSTs are used to control active power flow
- Commissioned a new 300MVA; 60Hz; 138kV; ±25°; symmetrical double-core PST in 2022
- Protected by two different systems, one incorporating the 87T for PST function

- Customer: ConEd, NY, USA
 - protection system must provide complete PST protection for all high- and low-level internal faults, as well as backup protection for all external ground faults
 - new solution, with 87T for PST
 - one relay, where traditionally many were required
 - low-level internal faults (turn-to-turn) covered, where traditionally had to rely on sudden pressure and/or Buchholz devices (overcurrent supervised)

Customer: ConEd, NY, USA

- Energization of the PST phase quantities
 - high DC offset and 2nd harmonic content in the source-side inrush currents remained stable (no operation)

PST's OLTC tap position on the substation HMI screen (tap 1 retard)

PST nameplate

	NA		NR		17
	Ν		N	0.0	к
	NR		NA		1
	1R		1A	-1.6	2
ard	2R	nce	2A	-3.2	3
	3R		3A	-4.8	4
	4R		4A	-6.3	5
	5R		5A	-7.9	6
	6R		6A	-9.5	7
	7R		7A	-11.1	8
teta	8R	lva	8A	-12.6	9
	9R	Ac	9A	-14.2	10

L-side current will lag S-side current by 1.6° S-side current into PST; L-side current from PST Therefore IED perceived angle difference = 178.4° lead

in menu/Co	ntrol/Sing	le l	ine diag	gra	m/CTs	:	
000							
ILA =	183.3 A/		-15 10				
ILB =	183.6 A/	=	-135.52	0			
ILC =	182.2 A/	=	104.95	0			
LOF	ID CT						
ILB =	183.2 A/ 182.8 A/	=	163.32	٥			
	181.1 A/	=	42.98	0			
			10.63				
	10140:18	\$0	Juest		Toos		

PhaseA: 178.44° PhaseB: 178.50° PhaseC: 178.42°

Conclusions

- 87T for PST only requires one three-phase current set and at least one phase-to-ground voltage from each side of the protected PST internally buried CTs within the protected PST tank are not required
- Position of any internal OLTC is not required
- 87T for PST is suitable for any PST regardless of its construction (symmetrical or asymmetrical; single-core or double-core) – protects the complete PST against all internal faults
- Transformation ratio and phase-angle shift are estimated on-line
- Typically, a minimum pickup of 20%, based on the PST rating, can be achieved for the differential protection
- Negative-sequence based differential protection provides additional sensitivity for low level turn-toturn faults
- Possible to use 87T for PST on standard two-winding transformer with OLTC where compensation for tap position is required (traditionally accomplished by connecting tap position to the 87T function) – 87T for PST continuously calculates on-line the "Ratio" without requiring connection of tap position