USING TIME SYNCHRONIZATION TO Improve your protection & control System

Walid Ali – GE Vernova

Today's Agenda

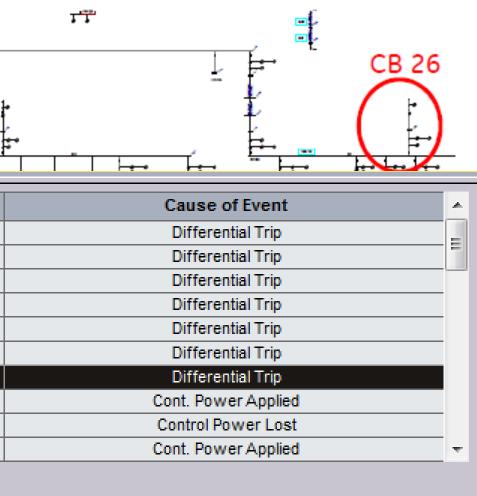
- Why Do We Need Time Synchronization?
- Time Synch Methods
- Clock Selection

Why Do We Need Time Synchronization?

- In 2011, NIST estimated economic benefits of time synch associated with GPS in the US to be \$125 billion
- Every IED's internal clock drifts widely and differently; it is not about absolute time but single reference origin (GNSS)

Electrical Grid Time Synch Requirements:

- Sequence of events, post-disturbance analysis (1 ms). NERC recommendation after blackout of 2003, PRC-018-1 requires DME synchronize to within 2ms or less to UTC
- Line current differential
- Synchrophasor (1µs)
- Traveling wave fault detection (300ns). The most demanding roughly 1-meter error per 3ns of timing error
- Process bus (1µs)


Time C (IEC618
ТО
T1
T2
Т3
Τ4
T5

h GPS in the US to be \$125 billion solute time but single reference

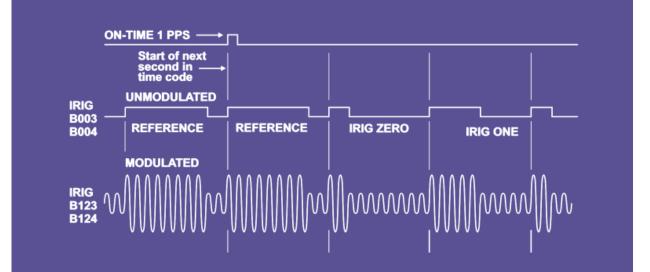
lass 850)	Accuracy (μs)	Phase Angle 60HZ	Fault Location %
	10000	216	NA
	1000	21.6	7.9
	100	2.2	.780
	25	.5	.0195
	4	.1	.031
	1	.02	.008

Case Study: Snake Causes a Distribution Fault

nt	Date		Time	Cause of Event					
	03/20/201	4	22:20:49.968	Dropout: P	hase Instantaneous OC 1		Ť	ť	
	03/20/201	14	22:20:49.954	Alarm: P	hase B - Arcing Current			+**	
	03/20/201	14	22:20:49.953	Dropo	ut: Neutral Time OC 1		F		
	03/20/201	14	22:20:49.953	Dropout: Ground Time OC			1		1
	03/20/201	14	22:20:49.945	Input(C) ON-Block Neutral Time OC 1			L L		1
	03/20/201	14	22:20:49.945	Input(C) O	N-Block Ground Time OC		, ₽ →		
	03/20/201	14	22:20:49.945	Input(C) ON-	-User Input D / ABB 50D Blk			<u>}</u>	
	03/20/201		22:20:49.937	· -	tive Sequence Overvoltage	Event	Date	Time	
	03/20/201		22:20:49.921		ase B - Phase Time OC 2	46	03/22/2014	22:20:10.05	
	03/20/201	4	22:20:49.921	Pickup: Ne	gative Sequence Time OC	45	03/22/2014	21:13:33.34	-
	L t					44	03/22/2014	20:50:10.92	
		Event	Date	Time	Cause (43	03/21/2014	11:33:29.68	
		374	03/20/2014	22:00:48.232	Pickup: Ground Ir	42	03/21/2014	09:14:34.50	
	37		03/20/2014	22:00:48.232	Pickup: Grou	41	03/21/2014	08:47:18.56	
	37		03/20/2014	22:00:48.232	Trip: Phase C - Phase	40	03/20/2014	23:20:33.15	
	37		03/20/2014	22:00:48.232	Pickup: Phase C - Phas	39	02/11/2014	08:38:36.53	
	370		03/20/2014	22:00:48.232	Trigger Tra	38	02/11/2014	08:38:35.74	
	369 03/20/2014 22:00:48.232 Trip: Phase C - Phase		37	02/11/2014	08:31:11.56				
		368	03/20/2014	22:00:48.232	Pickup: Phase C - Phas				
		367	03/20/2014	22:00:48.231	Trigger Da	- Loggoi			
		366	03/20/2014	22:00:48.231	Pickup: Phase C - F	hase Time	OC 1		
				Trigger Data	a Logger		-		

Global Navigation Satellite System (GNSS)

- Composed of GPS (USA), GLONASS (Russia), Galileo (EU), and BeiDou (China) satellite systems
- Currently only GPS and GLONASS are globally available
- GPS + GLONASS allow the receiver to be pinpointed by a group of 48 satellites across the globe
- When used together, increases accuracy with coverage
- GNSS constellations combined reduces the impact from GPS jamming and spoofing


We do not care what the actual time is - we care about event time in reference to single source

Time Synch IRIG-B

IRIG-B is a timing code:

- Uses voltage pulses on copper wire (modulated or unmodulated)
- Uses light pulses on optical cables
- Pulses indicate time from fractions of a second from midnight, date from January 1, last two digits of year
- Depending on extensions codes from IRIG-B, pulses may also indicate Daylight Savings Time occurrence, time offset from UTC, Time Quality...

Benefits

- Proven
- μs accuracy

Disadvantages

- Number of devices
- Distance limited by voltage drop (copper)
- Redundancy difficult
- Requires careful and exclusive wiring design

IRIG-B SIGNAL

Format A 1 K PPS Format B 100 PPS Format D 1 PPm Format G 10 pps Format H 1 pps Modulation 0 Unmodulated . DC Level , pulse-width coded 1 Amplitude modulated, Sine wave Carrier	
Format G 10 pps Format H 1 pps Modulation 0 Unmodulated . DC Level , pulse-width coded 1 Amplitude modulated, Sine wave Carrier	B
Modulation 0 Unmodulated . DC Level , pulse-width coded 1 Amplitude modulated, Sine wave Carrier	S
Carrier Frequency/Resolution 2 Manchester Modulated	
0 No carrier (DCLS)	
1100 Hz / 10 ms resolution21 kHz / 1 ms resolution310 kHz / 100 microsecond resolution	C
4 100 kHz / 10 microsecond resolution Coded Expression	Т
0 BCDTOY, CF, SBS	_
1 BCDTOY, CF 2 BCDTOY 3 BCDTOY, SBS	
4 BCDTOY, BCDYEAR, CF, SBS	
5 BCDTOY, BCDYEAR, CF	S
6 BCDTOY, BCDYEAR 7 BCDTOY, BCDYEAR, SBS	
	D
	B

BCD – Day of year, hour, minute and second

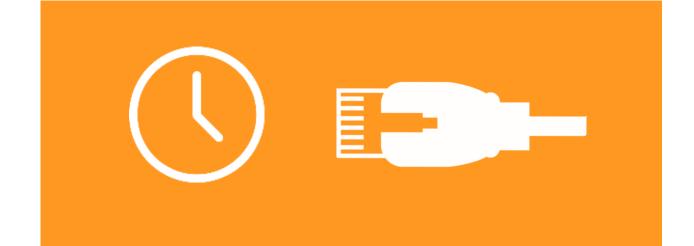
CF – Time zone, Daylight Saving Time, and year

SBS – Seconds of the day

BCDYear – Year

Time Synch NTP/SNTP

Networking protocol for clock synchronization between devices operating over packet-switched, variable-latency data networks, client-server application.


Accurate within millisecond range:

NTP is less accurate because:

- NTP does not compensate to the delay inside the network
- No time stamping at the hardware level

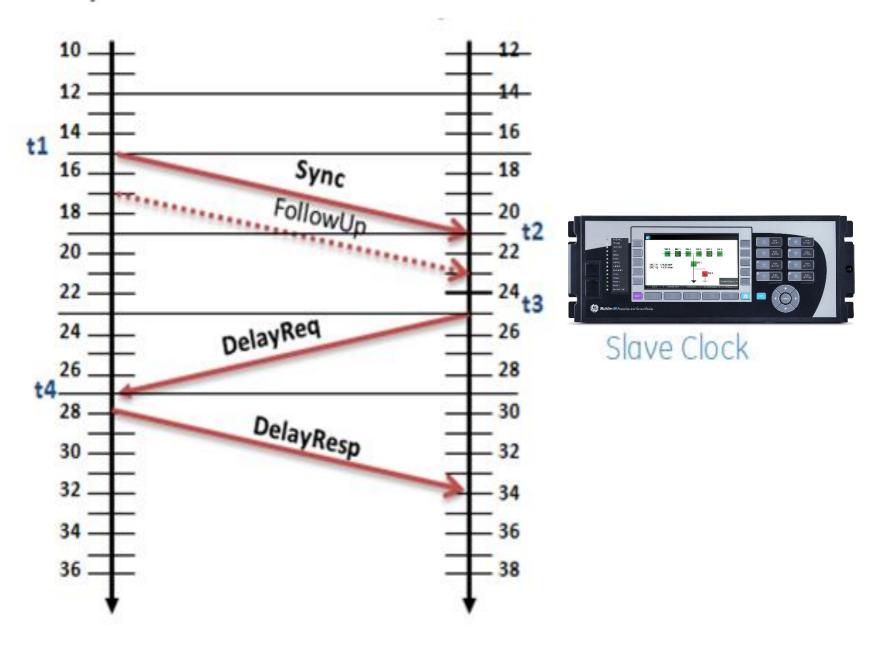
NTP does not recognize time zone and DST.

Time zone and DST may be handled by NTP/SNTP time server (clock).

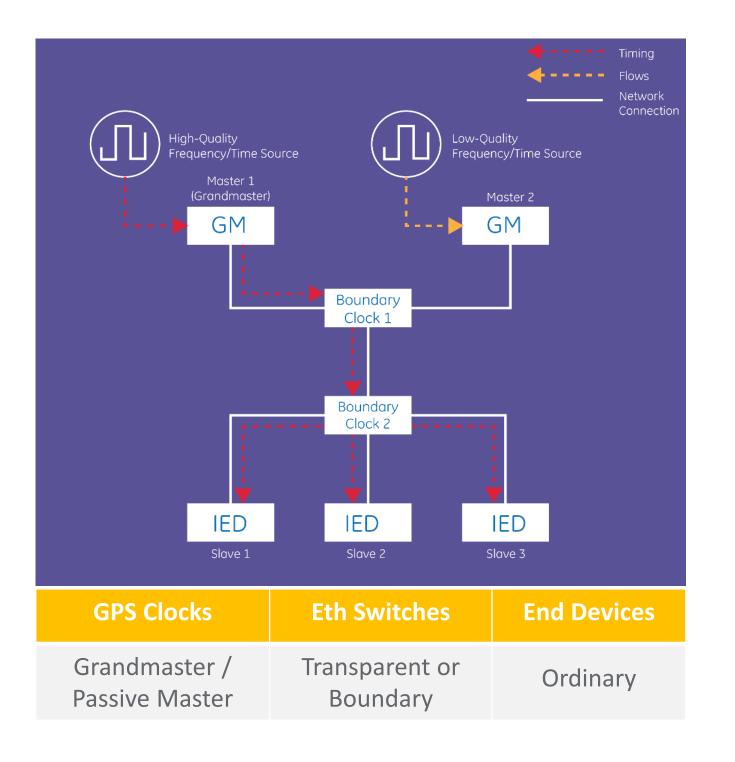
Benefits

- Uses Ethernet network, usually already installed
- Good enough for SOE

Disadvantages


- Accuracy in the ms range
- Accuracy depends on network traffic
- Not sufficient for application as PMU, TWFL, MU, ...

Time Synch IEEE 1588 Precision Time Protocol (PTP)


- Nanosecond accuracy possible
- Hardware stamping, more frequent updates
- Best master clock (BMC)
- Redundancy (PRP)

Master Clock

IEEE 1588 Definitions

Grandmaster Clock

Source of time for time sync using PTP •

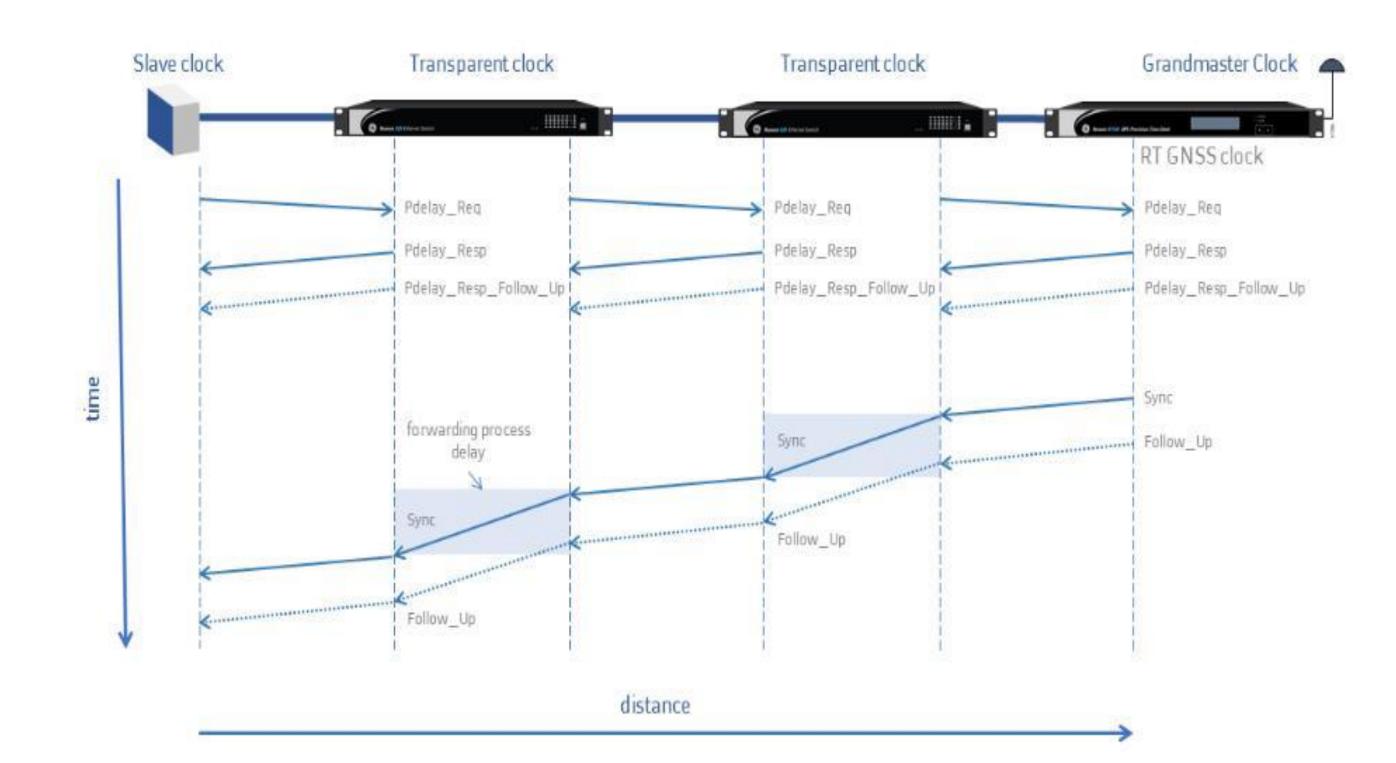
Ordinary Clock

- PTP clock with a single PTP port
- Can be master or slave
- Typically slaves at end device level

Boundary Clock

- Can be master and slave

Transparent Clock


- •

Multiple PTP ports (1x slave, others master)

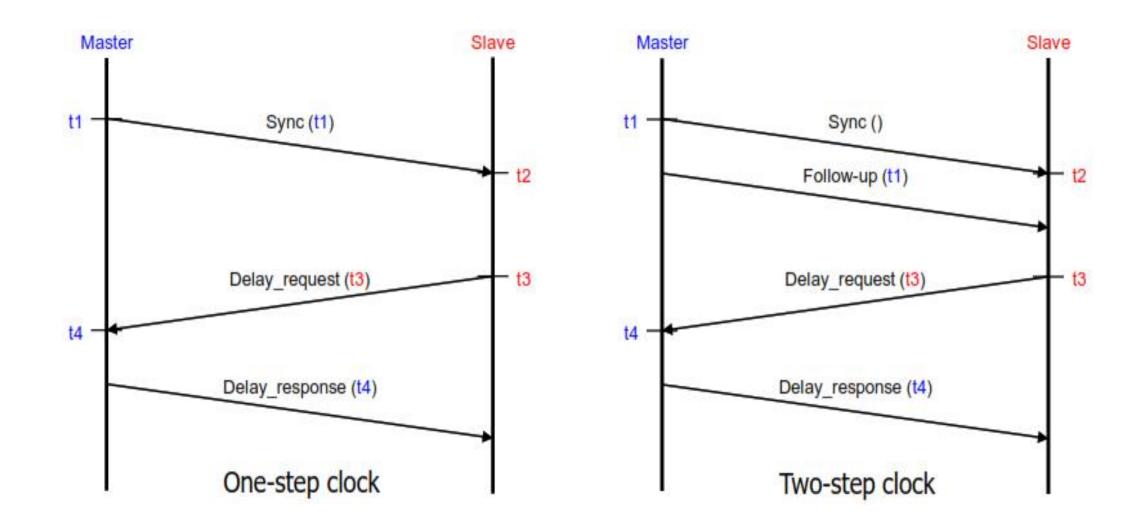
Publish Sync pulses in case masters are lost

Corrects the time of messages going through it Update time interval field in PTP messages

Time Synch P2P 2 Steps, Transparent Clock

Time Synch Best Master Clock (BMC)

Announce Messages includes the following attributes with the following priority:


- Priority 1: This is an 8-bit user settable value. The lowest number wins
- ClockClass: This enumerated list of clock states, for example, a GrandMaster clock (GPS sync) would have more class than free running on
- Clock accuracy: This enumerated list range of accuracy to UTC, for example 30-100 ns
- Clock Variance: Represents its stability based on observation of its performance over time
- Priority 2, same as priority 1 but lower in the decision-making tree
- Clock Identity: A universally unique numeric identifier for the clock. Typically constructed based on a device's MAC address serves as tie-breaker

IEEE 1588 Precision Time Protocol Announce Message

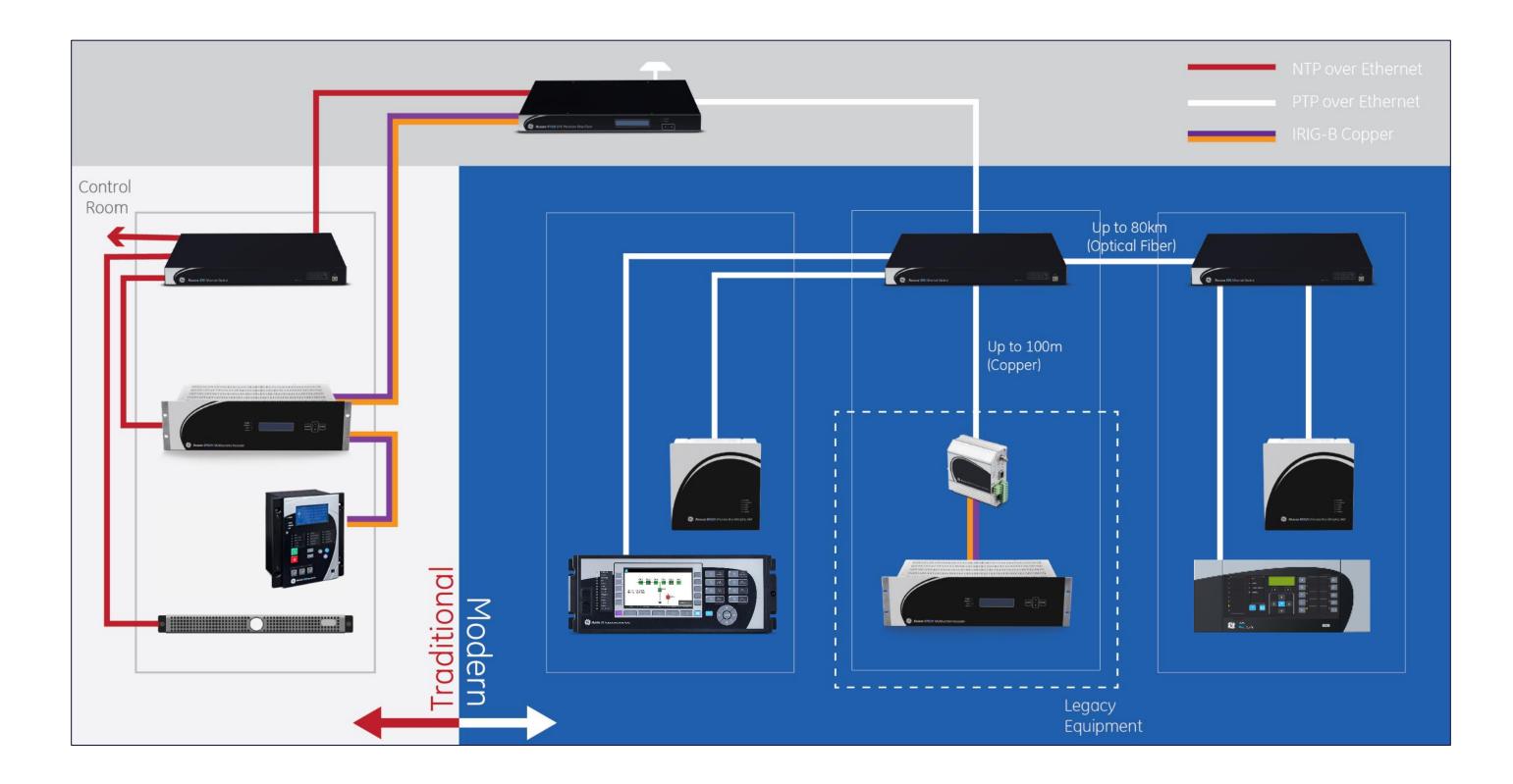
lame		Туре	Priority 1	Clk. Class	Clk. Acc.		Clk. Var.	Priority 2	GM Clk. ID		Steps Re	em.
	-				00.50.0	-2.1 4.00.DD						
	Steps Rei	moved: 0		0x0050C2FFFEF468BB:00001 00:50:C2:F4:68:BB								
c	GM Clock ID: 0x00	50C2FFFEF468	зв				0.04					
	Priority	2: 128				FFEF468BB						
Clock Variance: 1									Time Source: GPS			
	_					2			-	-		
	Clock Accuracy	. Within 100 ps				50-			UTC Offset (sec): 37			
	Clock C								Time: 2021-03-19, 10:58:39.733 TAI			
	Priority	1: 128										
rsion	PTPv2	~	Protocol IEE	E 802.3	~	Domain	0			AN None		
[PTTP 0		Dente and Line	5.000.0		Decesie	0			ANI Dises		
	EE 802.3, Dorr			loanee	12	Ŭ	00101	00.00.02.1 4.00				
125 126	Ethernet Ethernet	2021-03-19, 11 2021-03-19, 11		elay Req. nounce	v2 v2	0	43587 36484	F8:02:78:13:65 00:50:C2:F4:68		0:C2:00:00:0E B:19:00:00:00	IEEE_FFFE136580	
124	Ethernet	2021-03-19, 11		ow Up	v2	0	36483	00:50:C2:F4:68		B:19:00:00:00	IEEE_FFFEF468BB	
123	Ethernet	2021-03-19, 11	-		v2	0	36483	00:50:C2:F4:68		B:19:00:00:00	IEEE_FFFEF468BB	
122	Ethernet	2021-03-19, 11	:56:07 Ani	nounce	v2	0	36483	00:50:C2:F4:68	:BB 01:18	B:19:00:00:00	IEEE_FFFEF468BB	
	Interface	Time	MS	д. Туре	Version	Sdold/Dom.	Seq. ID	Source	Dest	ination	Device	

м	128	6	Within 100 ns (0x21)	1	128

Time Synch IEEE 1588 Precision 1 Step Versus 2 Steps

Delay Mechanism

- End-to-end: Measurement of delay across the network between master clock and slave clock.
- Peer-to-peer: Measurement of delay only between master and slave clocks as neighbors.
- All power profiles require P2P. E2E is more suitable if devices in the network do not support PTP


PTP Power Profiles

Those items not allowed in power profile:

- Use of non-TAI time stamps
- End-to-end path delay determination mechanism
- Unicast operation
- Other message rates

	IEEE C37.238:2011 PTP Power Profile	IEEE C37.238:2017 PTP Power Profile	IEC 61850-9-3 PTP Profile for Power Utility Automation		
Network Protocol	Ethernet Layer 2	Ethernet Layer 2	Ethernet Layer 2		
Delay Mechanism	Peer-to-Peer (P2P)	Peer-to-Peer (P2P)	Peer-to-Peer (P2P)		
Operation Mode	One Step	One or Two Step(s) One or Two Step(s)			
Sync / Announce Message Interval	1 per second / 1 per second	1 per second / 1 per second			
TLV messages	Required	Optional	Optional		
Grandmaster Priority	#1 and #2 = 128 Equal for all Grandmaster	Selectable, allowing to choose the best grandmaster for holdover conditions	Selectable, allowing to choose the best grandmaster for holdover conditions		

Traditional x Modern Time Synch

Considerations for Clock Selection

- Support for GNSS (jamming and spoofing)
- Supports IRIG-B , NTP, PTP simultaneously (legacy and new devices)
- Supports for PRP (redundancy)
- Full range power and redundant power supply
- SNMP support for remote status of the clock v1,v2,v3
- Software-based licensing for adding more features
- Software configurable
- TCXO internal oscillator in case signal to satellite lost
- Locked relay contact
- No internal battery

Conclusions

- Time synchronization is not optional it is a critical functionality in protection and control
- IEEE 1588 Time Synchronization protocol allows for sub-microsecond time synch and more robust redundancy than is required for application such as process bus, traveling wave
- Ethernet communication is the backbone of modern substations. With ullet1588 Time Synchronization protocol, it is that much more important
- As we modernize our infrastructure, we need to ensure newly sourced clocks and switches meet legacy and new technology needs

QUESTIONS ?