

Solving Complex Feeder Protection Challenges and Reducing Wildfire Risks With Remote Measurements

Bogdan Kasztenny

Schweitzer Engineering Laboratories, Inc.

Steven Blair, Neil Gordon, Philip Orr, Campbell D. Booth Synaptec, Ltd.

Distribution feeders become more complex

- Complex topology, multiple sections and branches
- Looped circuits, reclosers, and bidirectional short-circuit current flow
- Increasing load (EVs, heating)
- Distributed energy resources (DERs)
- Microgrid protection issues, islanded operation concerns

Powerline-caused wildfires become concerns

- Long fault clearing time and high energy released at the fault point
- Tree contacts last for a long time before high current follows
- "HiZ" and downed-conductor protection methods are too slow
- Low protection sensitivity for
 - High-impedance faults
 - Downed conductors

Powerline-caused wildfires

Mitigation is expensive

- Rigorous right-of-way vegetation management (mineral soil, gravel)
- Undergrounding overhead feeders
- Insulated overhead conductors
- Converting distribution networks to compensated ungrounded networks
- Experimental protection technologies

TOC protection becomes inadequate

- Historically, TOC feeder protection was
 - Technically adequate
 - Economically cost-efficient
- Today's feeders resemble scaled-down portions of a transmission system
- The industry desperately tries to "make the TOC protection work"
- We do have transmission-grade methods to protect complex feeders

Transmission-grade feeder protection Obstacles

- A "microsubstation on a pole"
 - Devices to measure and communicate
 - Low-latency dependable communications
 - Control power to run the devices
 - Housing to host the equipment
 - Crew access for maintenance
 - Physical and cybersecurity
- A solution exists but is dismissed because of cost and complexity

Powerline-caused wildfire mitigation

Feeder maintenance

- Managing vegetation to high standards
- Installing spacers to eliminate midspan phase faults
- Fault energy reduction
 - Tripping instantaneously for all fault locations
 - Tripping before a downed conductor hits the ground
 - Tripping instantaneously for tree-contact faults
- Multizone feeder differential protection can deliver the required protection speed and sensitivity

Multizone feeder differential protection

- Protection zones in general
 - Protection tripping zone defined by current interrupting devices
 - Fault detection zone defined by current measurement points
 - Ideally, the two zones overlap to maximize return on investment
- Feeder applications
 - Large protection tripping zones (necessity)
 - Small fault detection zones (objective)

Currents measured throughout the feeder

- Dramatically improve primary protection
 - Multizone differential protection
 - Sensitivity and speed for tree-contact faults
 - Speed for midspan phase faults
 - Downed-conductor detection
 - Dependable operation despite DERs
- Improve feeder, load, and DER backup protection
- Allow impedance-based fault locating
- Improve selectivity of autoreclosing
- Simplify settings
- Enable microgrid applications

Enabling technologies Distributed Electrical Sensing (DES)

- Remote CTs/VTs interrogated via fiber
- Passive No active electronics or control power outside the fence
- Weatherproof No housing required
- Distributed Many CTs/VTs share the same fiber
- Coherent No need for time synchronization
- Concentrated All current and voltage signals available in the substation

Enabling technologies

All-dielectric self-supporting fiber cables

- Relatively inexpensive
- Easy to install
- Some utilities already use ADSS on lower-voltage circuits
- Used in third-party networks on utility poles
- Allows Ethernet network to reach reclosers, DERs, and remote substations

Simplified system architecture

- ADSS fiber daisy-chains CTs
- Interrogator located in the substation provides the measurements
- Relays provide protection and other functions
- Tripping of reclosers and remote breaker via ADSSbased Ethernet feeder LAN

Distributed Electrical Sensing

Multiplexed passive sensing of current or voltage

- Passive sensing allows remote measurements outside the substation fence
 - Use conventional CTs
 - Up to 30 single-phase measurements per fiber, up to 60 km (37 mi)
 - Measurements are inherently synchronized no time source needed
 - No electronics or control power required
- Electronics and digitization of measurements are kept within substation
 - No cyber assets outside the substation fence
 - All sensors sampled synchronously, centrally

Passive Converter and CT

ADSS

Fiber Bragg grating principle and application

- A source shines a widespectrum light
- Reflected light encodes periodicity (notch spacing)
- Measured quantity affects periodicity (stretching or contracting)
- Reflected light encodes measured quantity

Optical measurement and multiplexing

- Wavelength also permits serial multiplexing each sensor is placed at a unique nominal wavelength
- Sensors are interrogated from a suitable central measurement point

Passively Reflected Light Encodes Measurements

All Sensors Illuminated Simultaneously

Electrical measurement technique

- CT and precision resistor are used to convert primary current to voltage
- Piezoelectric device converts voltage to strain, measurable by FBG
- Expansion or compression of the FBG causes a detectable shift in the reflected wavelength

And optional mechanical measurements

- CT and precision resistor are used to convert primary current to voltage
- Piezoelectric device converts voltage to strain, measurable by FBG
- Expansion or compression of the FBG causes a detectable shift in the reflected wavelength

OR remove piezo to directly measure strain, vibration, temperature

Measurement processing

$$V_{2} = xV_{1}$$

$$\lambda(nm) = A_{0} + A_{1}pix + A_{2}pix^{2} \dots + A_{5}pix^{5}$$

$$Peak pixel number$$

$$Peak wavelength$$

$$Electrical measurand$$

$$Electrical measurand$$

$$I = B_{0} + B_{1}\lambda_{inst}\lambda_{pp} + B_{2}\lambda_{inst}\lambda_{pp}^{2} + B_{3}\lambda_{inst}^{2}\lambda_{pp} \dots + B_{28}\lambda_{inst}^{6}\lambda_{pp}^{6}$$

- Measurement chain (CT to SV) is 5P class and compliant with IEC 60044-8 / IEC 61869-10
- Synchronization and latency comply with IEC 61850-9-2 / IEC 61869-9

Centralized measurement platform

- Wavelength-based sensing enables simple multiplexing and environmental resilience
- Mechanical and electrical measurements are synchronized on one platform
- Measurement system installation is fast and safe because of minimal wiring and power

- Every sensor is sampled centrally at up to 288 s/c
- Produces synchronized waveforms from each measurement point
- Supports multiple functions from one data source

Enabled topology

- Deploy conventional CTs at multiple remote locations
- Data published centrally, synchronously

Deployment with SSE Transmission, UK

Facilitating new grid connections from renewables in remote locations

- Overcame limitations of distance protection
- Achieved multi-ended differential fre single end
- Enabled wide-area, fully digital, ur protection scheme
- Avoided major civil works and tel upgrades for older remote subst
- Proved IEC 61850 operability with three relay brands
 https://www

Benefits and Conclusions

Protection benefits

- Scalable Differential protection for a single feeder section or many/all sections of a complex feeder
- Ultra-sensitive Protection for tree-contact faults and downed conductors
- Instantaneous Reduced fault energy, protection for galloping conductor faults
- Dependable Breaker failure and recloser failure protection, faster backup protection, not affected by DERs
- Future-ready Anti-islanding protection, microgrid monitoring, easier DER ride through

Passive current sensing + Costeffective ADSS fiber

"See" beyond the substation fence

Radical reframing of how to protect distribution feeders

Transmission-grade protection for complex distribution feeders

Fast, sensitive, granular unit protection

Addresses needs of high-risk wildfire areas