

Practical Approaches for the Digital Twin Representation of Protection and Control Systems

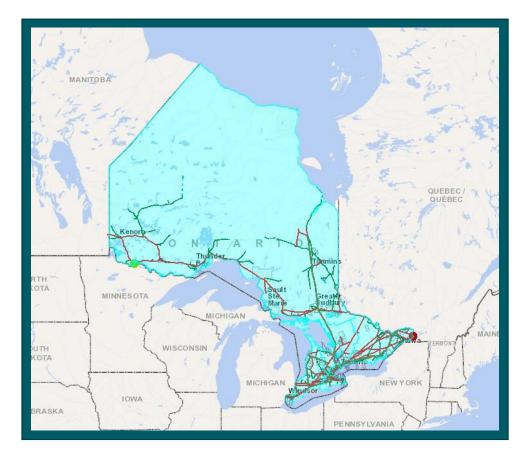
Linda Zhao | Hydro One Networks Inc. Mehrdad Chapariha | Quanta Technology

Mar. 25-27, 2024

Introductions

Linda Zhao

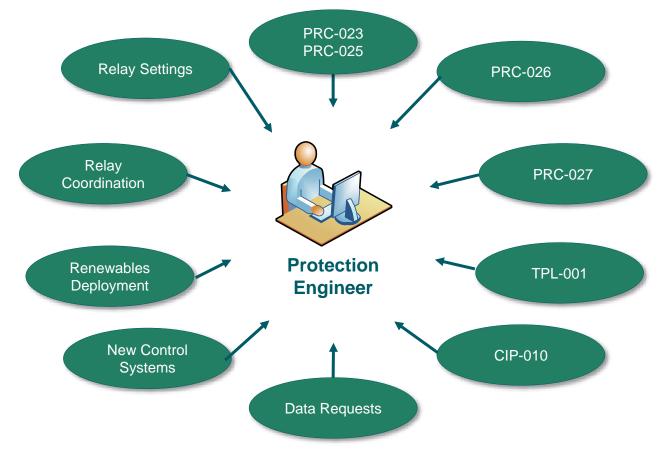
Senior Protection & Control Engineer, P&C Engineering Hydro One Networks Inc.



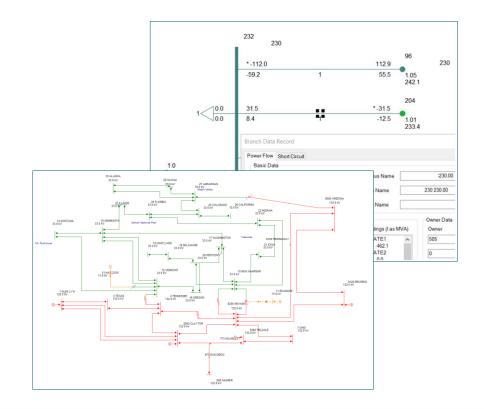
Mehrdad Chapariha

Senior Advisor, Digital Transformation Quanta Technology LLC

About Hydro One


- Hydro One is a publicly traded utility operating 97% of HV transmission and serving 1.3 million distribution customers in the province of Ontario.
- Ontario peak transmission demand roughly 25,000 MW.
- Hydro One HV Transmission: 500/230/115 kV levels (30,000 km ~ 19,000 mi).
- Hydro One LV Distribution: 44/27.6/13.8 kV levels (123,000 km ~ 77,000 mi).
- Interconnections with New York, Quebec, Manitoba, Michigan, Minnesota.

Introduction


- Protection and Control engineers are faced with increasing requirements for reliability, changing technology, and (especially) expanded compliance.
- Engineering departments must meet these new challenges with fewer personnel, especially as experienced engineers retire
- Software-based models ("digital twins") offer a compelling approach to meeting these challenges

This presentation will discuss the considerations in maintaining a Digital Twin model, as well how one major utility approached the question.

What is a Digital Twin?

"Virtual representation of an object or system designed to reflect a physical object accurately. It spans the object's lifecycle, is updated regularly to match true system data, and uses simulation.... to help make decisions. "

- Software representation of the power system, including its connections, characteristics, and functionality.
- Simulation that can replicate behavior, both in terms of system characteristics and equipment response, under different conditions.
- Enables decisions to be made or functionality to be confirmed.
- Performance and characteristics of protection systems: *do they respond appropriately and meet requirements?*

Need for Accurate Representation

- Digital models are only as good as the data they're made up of accuracy and completeness of representation are key to providing useful results.
- From Protection and Control perspective, there are generally two components:
 - System representation
 - Protection representation
- Building the model once is generally do-able; it may be a large effort, but it certainly can be done
 - But how to keep the model maintained across changes both in the system and in the protection?

How can we keep our digital twin models up-to-date so they accurately reflect the actual system?

Alignment Challenges

- Protection and Control does not function in a vacuum – there are other digital twins used at the utility.
- P&C model would ideally align with those in ٠ other departments (Planning), however:
 - Models maintained by different departments ٠
 - Departments have own conventions, ideas, and needs; models are built in different ways:
 - Topologies (some taps may not be • applicable to both)
 - Parameters (zero-sequence impedance) •
- Each department will have own update processes (independent from each other)

Planning Model	←?	Protection and Control Model

Branch Data Record								×				
								ŕ				
Power Flow Short Circuit Basic Data												
From Bus Number		Ero	m Bus Name				Service					
1 Tom Dus Number			III Dus Naille				Service					
To Bus Number		To	Bus Name			M	tered on From	end				
Branch ID	1	Bra	nch Name									
Branch Data					Owner Dat	a						
Line R (pu)	Line X (pu)		Ratings (I as	MVA)	Owner		Fraction					
			RATE1	^		Select	1.000					
Charging B (pu)	Length		RATE2		0	Select	1.000					
Line G From (pu)	Line B From	(pu)	RATE3		0	Select	1.000					
0.00000	0.00000	(pu)	0.0 RATE4		0	Select	1.000					
Line G To (pu)			0.0		U	Select	1.000					
0.00000	Line B To (p	No. 1 Contract Inc. 2017	ata: Query									×
0.0000	0.00000	◀	▶) +	- 🔺 🗸	/ × 🕐	Copy Record	Close	Original	Viev	w Branch Set	Tools	
			Num	iber	Name	Substat	on		Branch	Tag: 14		
		From B	us 14	мо	NTANA 3	3.00 kV MONTA	IA		In Servi	ce Date		
		To Bu	s 15	MIN	NESOTA :	33.00 KV MINNES	от		Out of S	Service Date		
		Circuit N	umber	1				Cat	tegory	1 OnLine	~	·)
		Line Nan	ne [Data las	st changed on 9	27/2018 by DB user	SYSDBA
											<< Advanced	
		Impedar		utual Coup	pling Quick	Calculations Por				ne Sections		
		Impeda	ince Unit Unit			Impedance S	ource:	Manual I	Entry			
		Ohn Pere		33 kV * 33	kV)/100 MV/	A) Line Length	0	K	ilometers	~		
		View										
		Con Full	npact	Series Zi R	km (p.u.) X	Total Charg G	ing (p.u.) B					
		+ Sequ	ence				0					
		0 Sequ	ence		•	0	0					
		_										
		-										

Alignment Challenges

Communication

- When and what should be updated?
- How to ensure that what's updated in one model is reflected in the next?

Alignment

• How to ensure that the system is represented the same way?

2

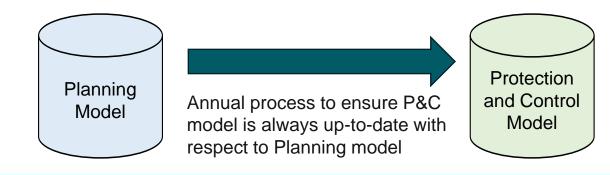
4

• Standardizing conventions, data, calculation methodologies

3

Ownership and Roles

- Who initiates the process and is responsible for the data?
- How are conflicts (inconsistencies) resolved?

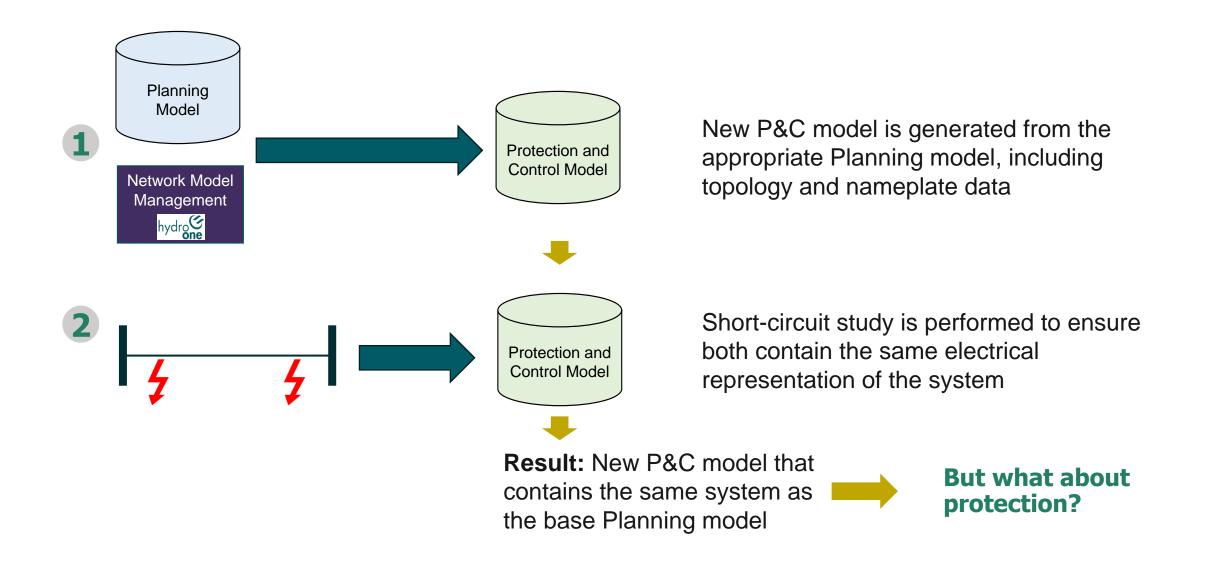

Department Collaboration

- Enhancing collaboration between departments to facilitate all of the above?
- Utilities typically dedicate teams to update processes and methodologies

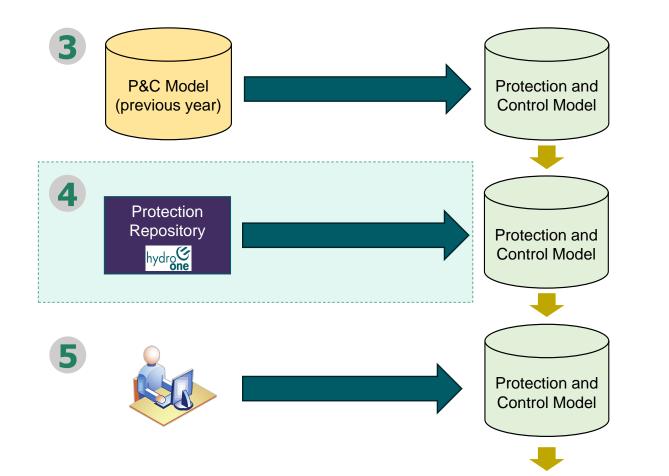
Hydro One's Approach

"Utilities typically dedicate teams to update processes and methodologies"

- Hydro One's process is different.
- Motivation was to ensure that the protection (short-circuit) model is always aligned with Planning for a given year.
- Instead of independently maintaining the short-circuit model...
- A new model is generated on an annual basis using the appropriate planning model as a basis



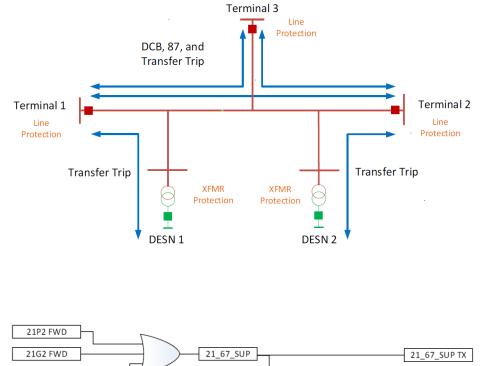
Needed for annually generated new model:


- Topology of system, including: buses, lines, equipment, connections
- Naming of buses, substations, equipment
 - Equipment parameters

Protection representation

Hydro One's Process – System

Hydro One's Process – Protection

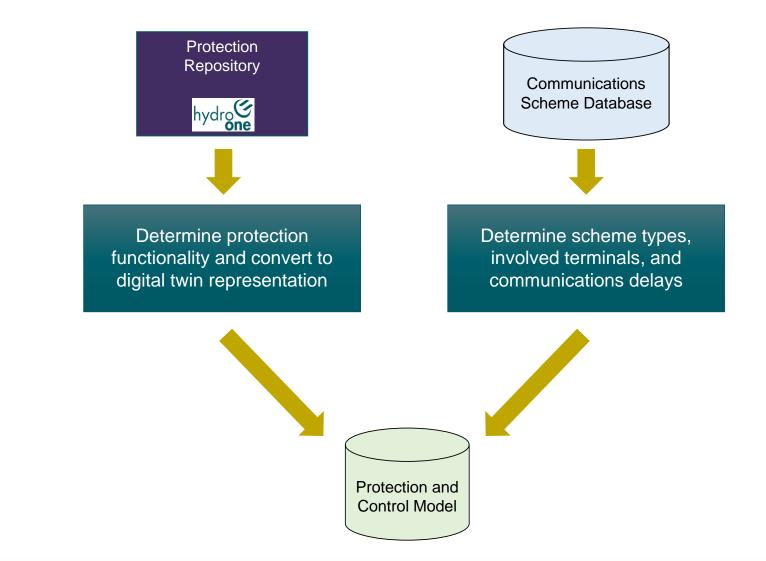

Previous year's protection model is merged into this newly generated one

Protection updated from previous year is identified; representation is created in the digital twin model

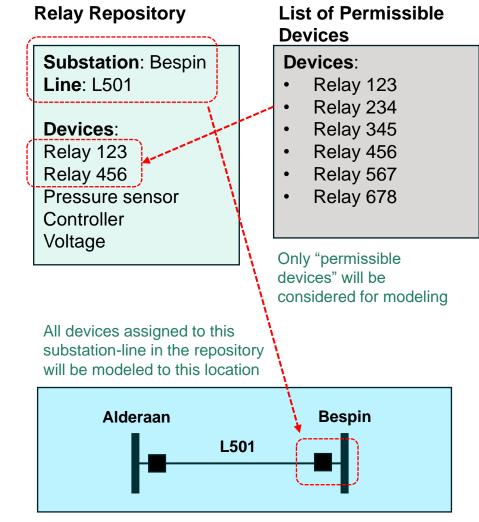
Engineers confirm new protection representation through simulation testing

Result: New P&C model that contains up-to-date system and protection representation

Challenges for Protection Representation



- Representing HONI protection schemes:
 - Protection schemes can be complex, with multiterminal lines including tap transformers (DESNs)
 - Need for custom implementation and logic in digital twin to properly represent protection functions – exceeded built-in software models!
- Line protection depends heavily on teleprotection schemes (POTT, DCB, TT, Line Differential):
 - Need to determine schemes and what terminals are involved
 - Need to implement additional supervisors
- How to determine what's changed?


Protection Update Methodology

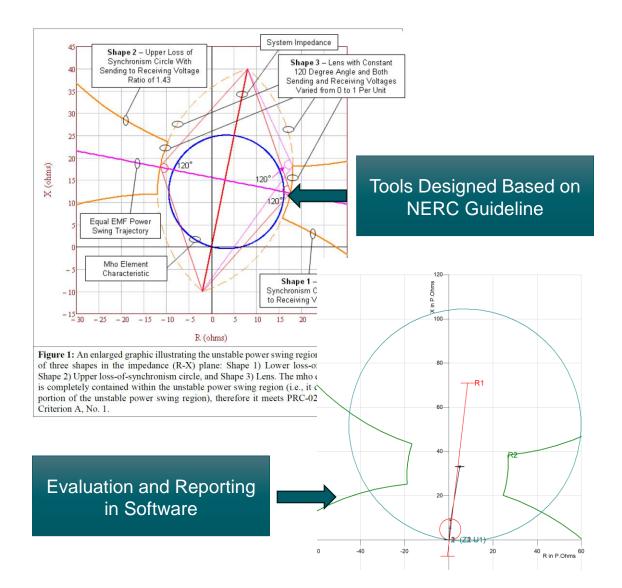
- Automation-based translation tools were adopted to aid in this modeling process
 - Connection to relay settings repository (gets relay configuration data)
 - Connection to communications database (gets communication scheme data)
- Tailored to meet HONI needs, especially in accommodating the protection complexities
- Support HONI's custom modules for communications schemes

External Information

- Protection update process requires external information to properly create functional representation.
- Communications Table:
 - Not all data for communications schemes can come from relay settings
 - External communications database is needed for connections between terminals and mediums
 - Maintain a table of communications schemes for each transmission line
- Translation Table:
 - Alignment of data from Repository to Digital Twin Model (match entry to location)
 - Locational approach was adopted to ease updates; accept the need to maintain "acceptable" relays

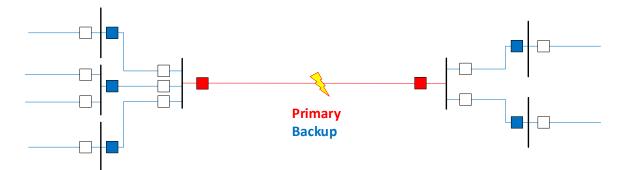
Digital Twin

Engineer Involvement


- Hydro One heavily relies on the expertise of our Protection and Control engineers.
- At no point do we want to take engineers out of the process and create a "black box".
- The entire process reflects this philosophy;
 "break points" are provided to let engineers override the automation if needed.
- Protection configuration selection is one example:
 - Protection interpretation can be automated,
 - But, as part of our process, we require engineers to confirm protection model will be configured correctly

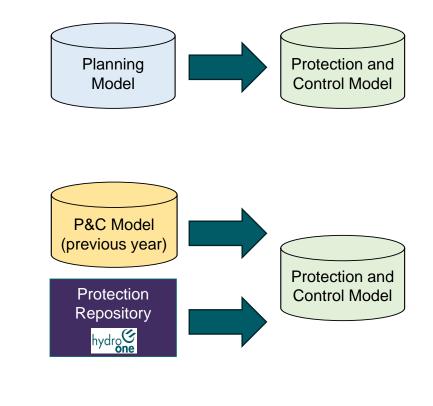
NAME				VA	LUE				
lelay Style				SEL-4	121-5_5A				
Device Asset ID									
lelay Asset ID									
lelay Parameter Se	t ID	Prote	ction identif	ied					
			in relay set		Existing relay				
Elements Taps			ogic Inputs	ung	configuration in model				
✓ Show Assigned	ed Elem	-							
ТҮРЕ	DES	GNATION	UNIT NUMBER	L IC CODE	(FRI LOGIC ODE (FRI	LOGIC CODE (TO	STATUS		
UX	67G1			↓	67G_Pilot_B	67G_Pilot_B 🔹	DIFFERENT		
UX	67G3				67GR_Pilot_B	67GR_Pilot_B ▼	DIFFERENT		
DIST	M1P		1	21P1_B	21P1_B	21P1_B •	ок		
DIST	M2P		2	21P2_Pilot_B	21P2_Pilot_B	21P2_Pilot_B 🔹	ок		
DIST	МЗР		3	21P3_Pilot_B	21P3_Pilot_B	21P3_Pilot_B 🔹	ок		
DIST	Z1G		1	21G1_B	21G1_B	21G1_B 🔻	ок		
DIST	Z2G		2	21G2_Pilot_B	21G2_Pilot_B	21G2_Pilot_B 🔹	ок		
DIST	Z3G		3	21G3_Pilot_B	21G3_Pilot_B	21G3_Pilot_B 🔹	ок		
oc	50P1			50P_LT_SB_B	50P_LT_SB_B	50P_LT_SB_B 🔻	ОК		
IMER	67G1	D	1	67G_Pilot_B		•	DIFFERENT		
IMER	67G3	D	1	67GR_Pilot_B		•	DIFFERENT		
IMER	Z2GD)	1	21G2T_B	21G2T_B	21G2T_B •	ок		
IMER	Z2PD		1	21P2T_B	21P2T_B	21P2T_B •	ок		
юc	5151	г		51GT_B	51GT_B	51GT_B •	OK		
						ngineer's selection of vhat should be modeled			

Engineers have the capability to review the protection interpretation and make changes if needed


Applications: PRC-026

- NERC PRC-026 standard requires detailed evaluation for unstable power swing region.
- Requires consideration of data from various sources.
 - Power system equivalents
 - Relay settings and characteristics
- Can use digital twin to accurately model and study the settings versus requirements.
- Can design and validate mitigation approach with help of automated scripts.
- Audit-ready plots can be generated by the software for reporting.

Applications: PRC-027


- NERC PRC-027 requires coordination study for buses with more than ±15% variation in fault current over 6-year period.
- Requires consistently keeping an accurate digital twin model every year for comparison.
- Coordination is a challenging study without computer models.
 - Large amount of backup relay tripping and teleprotection logic must be evaluated at once.
 - Each type of relay has slightly different operating principles.
 - Must consider hundreds of protection and power system contingencies (N-1).

 Can do extensive fault current comparisons and wide-area coordination studies using automated tools now that we have the digital twin of the protection system.

Conclusion

- Digital twins that can accurately represent system and protection behavior serve to help utilities, including Protection and Control engineers, make decisions while coping with challenges and meeting responsibilities.
- Maintaining a digital twin can be challenging, especially alignment with other models and maintaining through updates.
- Hydro One's annual update process ensures the P&C Model is always aligned with the Planning Model:
 - New P&C Model is generated every year from the latest applicable
 Planning Model
 - Protection from previous year is merged with new model, and new protection is updated
- Automation-based approach is used to update the protection representation, tailored to meet HONI's needs (complex schemes)
- Our philosophy is to leverage the expertise of our engineers. Automation processes were built to accommodate this philosophy

Thank you

For more information, please contact us at

YilinLinda.Zhao@HydroOne.com MChapariha@Quanta-Technology.com

