Generator Power Swing Out-of-Step Protection and Analysis of Misoperation Events

Seth Barnes

Tennessee Valley Authority

Laurel Brandt Tennessee Valley Authority Joshua Hughes Qualus

Presented at the 77th Annual Conference for Protective Relay Engineers March 25-28, 2024

Overview

- Generator Power Swing or Out-of-Step Protection Basics
- Planning Studies
- Setting and Calculation Verifications from Event Data
- Recent OOS Misoperation Event Analysis

Generator Power Swing or Out-of-Step (OOS) Protection Basics

- Detects loss of synchronism between a connected generator and power system
- Unstable power swings may cause a generator pole slip event
 - High currents
 - Winding stresses
 - Mechanical forces leads to transient high torque on the generator shaft
- OOS protection should detect an unstable power swing before damage occurs.

- Other generator protection elements will not detect OOS conditions
 - Typically is a reduced voltage and higher frequency event, so V/Hz will not operate
 - Frequency elements are not fast or sensitive enough to detect the condition
 - Does not plot in the same impedance location, so backup distance impedance elements are unlikely to operate before the elements time out
- Fast detection of the OOS condition is required to prevent system instability and damage to generator

- OOS trip may be delayed to ensure separation between generator and system is reasonable
- At worst case 180° difference, the large voltage difference stresses the breaker tripped for the OOS condition
- Slow-clearing system faults and generator loss-ofexcitation events can cause OOS conditions.

- Various OOS (ANSI 78) characteristics are employed
 - Mho circle impedance zones
 - Quad impedance zones
 - Multi-stage blinders
- System fault impedance moves inside the protection zone almost instantaneously
- Power swing impedance travels into the protection zone slower
- Transient stability study is required to determine timing

Single-Blinder Scheme

- Fault impedance must pass through outer zone and into the inner zone.
- Some characteristics have a small time for the impedance to plot in the outer zone while others just require it to pass through the zone.
- Fault impedance must persist in inner zone for short/settable time
- Trip on exit of mho circle on opposite side
- Limited system study is needed.

Double-Blinder Scheme

- Fault impedance must remain in outer zone for a settable time.
- Fault impedance must proceed into the inner zone for OOS Trip declaration
- Trip on exit of mho circle
- Detailed transient study required to determine time in outer zone

Impedance-Zone Scheme

- These schemes use lenses, circles or quadrilateral shapes to define zones
- These schemes require transient studies to determine the time the impedance plots between the outer/middle/inner zones for an unstable swing
- Can be a 2-zone or 3-zone characteristic
- Trip on determination of swing in inner zone or exit of outer zone

Planning Studies

Transient Stability Studies

- Stability studies determine how long a fault can persist and the system recover (stable) or require separation (unstable)
- An unstable system will result in generator and system angle increasing after the fault is cleared
- Three-phase faults lose connection with system; generators may speed up with loss of load
- If generator speeds up too much or system angle separation is too great, the generator may continue around to sync rather than slowing down – slipping a pole

Transient Stability Studies

- Generator excitation and control system responses must be modelled accurately
- Example studies showed this event should have caused an out-of-step condition and tripped
- Excitation system was tested to validate model, but did not match results
- Age of excitation system prevented valid model from test results

Real (MW) vs Reactive (MVAR) Power Diagram

Transient Stability Studies

- Exampe Slow clearing fault on downstream utility 1mi away
- OOS condition on 3 units
- Two units has OOS protection and tripped while the 3rd did not have OOS protection
- Lack of information for downstream utility prevented model from providing accurate results

Real (MW) vs Reactive (MVAR) Power Diagram

Misoperation Event

Single Line Overview

- CTG2 was offline
- CTG1 configured for a dual quadrilateral zone power swing element
- Utility experienced a slow-clearing evolving fault on a transformer

CTG1 OOS Element

- Dual zone quad power swing element
- Backup distance element shown as well
- Inner zone determines when generator and system are 120/240° apart
- Outer zone detects stable swings and assures angle is <60° for trip

CTG1 OOS Element

- Transient stability study determined critical clearing time is 16 cycles for GSU highside fault
- At 17 cycles, 0.132s to shift 60°, 0.288s to shift 120°
- 100ms time threshold for power swing between outer and inner zones

- CTG1 current
- STG3 current
- 161kV bus voltage
- Fault evolved from PP to PPG to 3P
- 3P fault persisted 28 cycles

- Upper quad reach set to 1.5x GSU Impedance
- Backup 21-2 Time delay is 75 cycles
- CTG1 shifted 95° between initial 3P fault and start of pole-slip
- No differentiation between inner/outer OOS zones at top, so not considered a swing

- Fault impedance between right outer/inner blinders for 80ms (less than 100ms) after pole slip
- OOS element would not have caught this on further pole slips
- CTG1 tripped on ratebased acceleration overspeed from turbine control system

- Turbine control system also had a communications system failure and could not directly trip the unit. This signal was sent to the generator protective relays as a Breaker Failure Initiate (BFI)
- Gen relays issued a re-trip, which opened the gen breaker
- The comm system failure prevented the excitation system from tripping and remained energized for 4 minutes after the fault.
- After CTG1 tripped, STG3 remained online for 2 seconds, tripping on reverse power from low current/motoring condition

- Reducing inner zone upper reach from 0.35 to 0.27Ω would allow Z1 to plot between the zones for 0.16s and arm the OOS element
- 100ms power swing threshold will also be re-examined

Summary

- Fault occurred on downstream utility equipment, which may not be modelled in system accurately
- Single-blinder and two-zone OOS power swing elements can be easier to set, but should still consider worst case conditions and perform some transient study verifications
- Double-blinder and three-zone OOS elements require more effort to set correctly, but provide a secure element
- Verification of OOS element for any longer fault is recommended during analysis

Questions