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Overview

* Generator Power Swing or Out-of-Step Protection Basics
* Planning Studies

* Setting and Calculation Verifications from Event Data

* Recent OOS Misoperation Event Analysis



Generator Power Swing or OQut-of-Step (O0S)
Protection Basics



Generator OOS Protection

* Detects loss of synchronism between a connected
generator and power system

* Unstable power swings may cause a generator pole slip
event
* High currents
* Winding stresses
* Mechanical forces leads to transient high torque on
the generator shaft

* OOS protection should detect an unstable power swing
before damage occurs.



Generator OOS Protection

e Other generator protection elements will not detect
OOS conditions

 Typically is a reduced voltage and higher frequency event, so
V//Hz will not operate

* Frequency elements are not fast or sensitive enough to
detect the condition

* Does not plot in the same impedance location, so backup
distance impedance elements are unlikely to operate before
the elements time out

* Fast detection of the OOS condition is required to
prevent system instability and damage to generator



Generator OOS Protection

* OOS trip may be delayed to ensure separation between
generator and system is reasonable

* At worst case 180° difference, the large voltage
difference stresses the breaker tripped for the OOS
condition

* Slow-clearing system faults and generator loss-of-
excitation events can cause OOS conditions.



Generator OOS Protection

 VVarious OOS (ANSI 78) characteristics are employed
* Mho circle impedance zones
* Quad impedance zones
* Multi-stage blinders

e System fault impedance moves inside the protection
zone almost instantaneously

* Power swing impedance travels into the protection zone
slower

* Transient stability study is required to determine timing



Single-Blinder Scheme

* Fault impedance must pass
through outer zone and into the
Inner zone.

* Some characteristics have a small
time for the impedance to plot in
the outer zone while others just
require it to pass through the zone.

* Fault impedance must persist in
inner zone for short/settable time

* Trip on exit of mho circle on
opposite side

e Limited system study is needed.
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Double-Blinder Scheme

* Fault impedance must remain in
outer zone for a settable time.

* Fault impedance must proceed
into the inner zone for OOS Trip
declaration

* Trip on exit of mho circle

* Detailed transient study required
to determine time in outer zone
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Impedance-Zone Scheme

* These schemes use lenses, circles

or quadrilateral shapes to define
zones
* These schemes require transient /F
4

studies to determine the time the
impedance plots between the
outer/middle/inner zones for an
unstable swing

 Can be a 2-zone or 3-zone
characteristic

* Trip on determination of swing in
inner zone or exit of outer zone
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Planning Studies



ransient Stability Studies

* Stability studies determine how long a fault can persist and the
system recover (stable) or require separation (unstable)

* An unstable system will result in generator and system angle
increasing after the fault is cleared

* Three-phase faults lose connection with system; generators
may speed up with loss of load

* If generator speeds up too much or system angle separation is
too great, the generator may continue around to sync rather
than slowing down — slipping a pole



ransient Stability Studies

e Generator excitation and control

system responses must be modelled
accurately .

* Example — studies showed this event =\
should have caused an out-of-step T~
condition and tripped NN

* Excitation system was tested to ) ‘

validate model, but did not match )
results

* Age of excitation system prevented )

valid model from test results —
Real (MW) vs Reactive (MVAR) Power Diagram



ransient Stability Studies

* Exampe — Slow clearing fault on
downstream utility 1mi away

» 00S condition on 3 units u P A IR

» Two units has OOS protection and N
tripped while the 3™ did not have | ©| /
OOS protection Jl

2 :l-, VEar)

* Lack of information for H
downstream utility prevented e
model from providing accurate
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Misoperation Event
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CTG1 O0S
Element

* Dual zone quad power
swing element

* Backup distance
element shown as well

* Inner zone determines
when generator and
system are 120/240°

apart

* OQuter zone detects
stable swings and
assures angle is <60° for
trip
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CTG1 O0S
Element

* Transient stability
study determined
critical clearing time is

16 cycles for GSU high-
side fault

* At 17 cycles, 0.132s to
shift 60°, 0.288s to
shift 120°

* 100ms time threshold
for power swing
between outer and
Inner zones
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System Event

* CTG1 current
* STG3 current
* 161kV bus voltage

e Fault evolved from PP
to PPG to 3P

* 3P fault persisted 28
cycles
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System Event

e Upper quad reach set to
1.5x GSU Impedance

* Backup 21-2 Time delay
is 75 cycles

 CTG1 shifted 95°
between initial 3P fault
and start of pole-slip

* No differentiation
between inner/outer
OOS zones at top, so not
considered a swing
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System Event

* Fault impedance
between right
outer/inner blinders for

80ms (less than 100ms)
after pole slip

* OOS element would not
have caught this on
further pole slips

* CTG1 tripped on rate-
based acceleration
overspeed from turbine
control system
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System Event

* Turbine control system also had a communications system failure
and could not directly trip the unit. This signal was sent to the
generator protective relays as a Breaker Failure Initiate (BFI)

* Gen relays issued a re-trip, which opened the gen breaker

* The comm system failure prevented the excitation system from
tripping and remained energized for 4 minutes after the fault.

* After CTG1 tripped, STG3 remained online for 2 seconds, tripping
on reverse power from low current/motoring condition
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Summary

* Fault occurred on downstream utility equipment, which may
not be modelled in system accurately

* Single-blinder and two-zone OOS power swing elements can
be easier to set, but should still consider worst case
conditions and perform some transient study verifications

* Double-blinder and three-zone OOS elements require more
effort to set correctly, but provide a secure element

* VVerification of OOS element for any longer fault is
recommended during analysis



Questions



	Slide 1: Generator Power Swing Out-of-Step Protection and Analysis of Misoperation Events
	Slide 2: Overview
	Slide 3: Generator Power Swing or Out-of-Step (OOS) Protection Basics
	Slide 4: Generator OOS Protection
	Slide 5: Generator OOS Protection
	Slide 6: Generator OOS Protection
	Slide 7: Generator OOS Protection
	Slide 8: Single-Blinder Scheme
	Slide 9: Double-Blinder Scheme
	Slide 10: Impedance-Zone Scheme
	Slide 11: Planning Studies
	Slide 12: Transient Stability Studies
	Slide 13: Transient Stability Studies
	Slide 14: Transient Stability Studies
	Slide 15: Misoperation Event
	Slide 16: Single Line Overview
	Slide 17: CTG1 OOS Element
	Slide 18: CTG1 OOS Element
	Slide 19: System Event
	Slide 20: System Event
	Slide 21: System Event
	Slide 22: System Event
	Slide 23: System Event
	Slide 24: Summary
	Slide 25: Questions

