Balancing DER Ride-Through Requirements and System Protection A Utility Perspective

BRYAN HOSSEINI AND JASON ERUNEO DUKE ENERGY

YUJIE YIN, MO'ATH FARRAJ, AND AMIN ZAMANI QUANTA TECHNOLOGY

IEEE 1547 – What is it?

- The IEEE 1547 standard is the basis for a uniform standard for the interconnection and interoperability of distributed energy resources with electric power systems.
- It provides requirements relevant to the interconnection and interoperability performance, operation and testing, and, to safety, maintenance and security considerations.
- This standard focuses on the technical specifications for, and testing of, the interconnection itself, and not on the types of the DER technologies.
- The standard aims to be technology-neutral, although acknowledges that the technical attributes of DER and the types and characteristics of EPSs do have a bearing on the interconnection requirements.

Outline of IEEE 1547-2018

- 1. Overview
- 2. Normative references
- 3. Definitions and acronyms
- 4. General interconnection technical specifications and performance requirements
- 5. Reactive power capability and voltage/power control requirements
- 6. Response to Area EPS abnormal conditions
- 7. Power quality
- 8. Islanding
- 9. DER on distribution secondary grid/area/street (grid) networks and spot networks
- 10. Interoperability, information exchange, information models, and protocols
- 11. Test and verification requirements

What about Transmission vs. Distribution DER Standards?

IEEE 2800 vs. IEEE 1547 standards

The Next Perfect Storm (naruc.org)

Balancing DER Ride-Through Requirements and System Protection A Utility Perspective | 3

IEEE 1547 Evolution of Grid Support Functions

IEEE 1547-2003	 Shall NOT actively regulate voltage Shall trip on abnormal voltage/frequency.
IEEE 1547a-2014 (Amendment 1)	 May actively regulate voltage May ride-through abnormal voltage/frequency May provide frequency response (frequency droop).
IEEE 1547-2018	 Shall be capable of actively regulating voltage Shall be capable of frequency response Shall ride-through abnormal voltage/frequency May provide inertial response

IEEE 1547 – Grid Support

Ride-Through

Ability to withstand voltage or frequency disturbances inside defined limits and to continue operating as specified.

Impacts of Transmission Disturbances - Voltage

- Transmission faults can depress distribution voltage over very large areas
- Overly sensitive DER voltage protection can result in widespread loss of DER generation.
- DER response to Transmission events could result in further system degradation

Impacts of Transmission Disturbances - Frequency

- System frequency is defined by the balance between load and generation.
- Frequency is nearly the same across entire interconnection; all DERs can trip simultaneously during disturbance.
- Impact is the same whether or not DER is on a highpenetration feeder. *

*Credit to Dr. Jens Boemer

Voltage Ride-Through of Inverter Based DER (Utility Scale DER >=1MW)

- Need to determine the Normal Operating & Abnormal Operating Capability that is desired for the Inverter Based DER Generators
 - The deep sag ride-through is important and determined the need for Category III capability
- Inverter Voltage/Frequency Clearing Times:
 - The OV1 clearing time should be evaluated for balancing system recovery time vs overvoltage exposure
 - The OV2 clearing time is fixed per the standard
 - The UV1 clearing time should be evaluated to balance delayed system recovery vs undervoltage exposure
 - The UV2 clearing time should be evaluated to coordinate with transmission system breaker clearing time, to allow the transmission system to manage Bulk Electric System (BES) disturbances.
 - The UF clearing times should be aligned with transmission schemes to provide the best support of the Bulk Electric System (BES).
 - The OF clearing times could be evaluate if the default values of the standard are acceptable.

Power System Stability

Ride-Through Flaws

- The relay at the interconnecting point between the DER site and the interconnecting system is out of scope of IEEE 1547
- Ride-through requires a lot more than just voltage and frequency protection

Ride Through Challenges

 Legacy substation design practices were based on one-way power flow

Ride Through Challenges

- Legacy substation design practices were based on one-way power flow
- Faults on Local Transmission system create a challenge when implementing DER Ride Through settings
 - Potential for Ground Fault Transient Overvoltage (GF-TOV) on Transmission line after breakers clear fault
 - Lack of existing infrastructure to implement solution on Transmission system
 - GF-TOV can damage surge arresters or other power equipment
- Evaluate protection scheme at Distribution system DER to detect Transmission SLG faults
 - Scheme is difficult to implement due to many factors drive system impedance

GROUND FAULT INDUCED TOV

GROUND FAULT TOV

- TRANSMISSION SINGLE LINE TO GROUND (SLG) FAULTS ARE OF MOST CONCERN
- TOV MAGNITUDE IS DEPENDENT ON LOAD TO GENERATION RATIO

Passive Voltage Protection

Primary method of system level fault detection for IBR based DERs

Balancing DER Ride-Through Requirements and System Protection A Utility Perspective | 12

Passive Voltage Protection

Very Dependable

- Easy to deploy
- Very reliable for a synchronous generation-based system

Cons

Pros

- Security Limitations
- Difficult to coordinate with relays within the distribution system

General Protection Performance

Voltage Based Signature Schemes

Fault Signature Schemes

TRANSMISSION SLG VOLTAGE SIGNATURE

- Single line to ground (SLG) fault on HV side of Delta Wye-Grounded transformer is reflected as two phases low on LV side
- This logic can be used to as a sophisticated voltage scheme to detect faults (T-FAULT)
 - Signature is only present while Transmission system is connected
 - T-FAULT logic is susceptible to detecting faults that are beyond the local transmission line breakers

T-FAULT Scheme Challenges

- It appears that the performance of sophisticated voltage schemes are sensitive to system parameters:
 - Loading conditions
 - DER generation levels
 - Distance from T/D substation

T-FAULT Scheme Challenges

- The asymmetry that is present in many systems limit the scheme's reach and results in misoperations
- The T-FAULT logic voltage setpoints need to be evaluated for each site
- The overreach has the potential to impact ridethrough performance and the underreach signifies that the scheme may not be dependable
- The overreach has the potential to impact ridethrough performance and the underreach signifies that the scheme may not be dependable

Voltage Based Signature Schemes

Pros

- Can detect faults along the tapped transmission line
- Can isolate the DERs very quickly

Cons

- Must overreach for 100% protection. This makes the scheme susceptible to misoperations
- Relies in the transmission connected synchronous generation to reliably operate
- Schemes are complicated and difficult to set
- Performs very poorly on asymmetrical transmission lines
- Prone to misoperate for faults along adjacent feeders
- Dependent on system parameters. As system topology and variables change the pickups may require modifications

Frequency Protection

Past IEEE 1547 Versions

IEEE 1547-2018

Anti-Islanding Bias

Frequency Protection Ride-Through Bias

TESTBED SETUP

- The laboratory setup employed Control Hardware in Loop (CHIL) to perform closed-loop testing.
- The devices under test are the DER site protective relays
- The relays are interfaced with the Real Time Simulator utilizing:
 - Analog Output Cards (GTAO)
 - Voltage and Current to Relay
 - Digital Input Cards (GTDI)
 - Recloser Trip Signals to RTDS
 - Network Protocol Interface (GTNET)
 - Monitor Various status during testing

TEST SCOPE

- The testing scope included a benchmark protection scheme (DER-RT) and the T-FAULT scheme
 - Various fault locations were selected for evaluation
 - Various fault types were evaluated for each fault location
 - Loading was varied for fault scenarios
- DER-RT the protection logic that is implemented at a Point of Common Coupling (PCC) recloser that consists of:
 - Passive Elements
 - Based on IEEE 1547-2018, Section 6
 - Sequence Component Elements
 - To detect faults on the Electric Power System (EPS)
 - Directional Overcurrent Elements
 - To detect faults within the DER site

3 Miles CB1

0.16

Miles

10 Miles

Surge Arrester

R525

1 Mile

PV_2

0.1 Mile

PV 1

- Ideal response for Line-Line-Ground Fault at F1 is ^(s1) reclosers R525 and PV_2 trip to isolate the fault and all other protective devices should not operate
- DER-RT protection scheme
 - PV_2 Trips on undervoltage
 - R525 Trips on overcurrent in 6.3 cycles
- T-Fault logic
 - PV_2 Trips on zero-sequence overvoltage
 - R525 Trips on overcurrent in 6.6 cycles
 - PV_1 and PV_2 Trip on T-FAULT logic

(PV3, voltage signature based protection)

- Ideal response for Line-Ground Fault at F2 is recloser R577 to isolate the fault and all other protective devices should not operate
- DER-RT protection scheme
 - Timer 2 (zero sequence overvoltage) has a 10 cycle delay
 - R577 Trips on overcurrent in ~6 cycles
 - PV_1, PV_2, and PV_3 ride-through
- T-Fault logic
 - Timer 2 (zero sequence overvoltage) is intentionally set to miscoordinate with a 4.5 cycle delay
 - R577 Trips on overcurrent in ~6 cycles
 - PV_1, PV_2, and PV_3 Trip ride-through

(PV1, voltage signature based protection scheme)

- Ideal response for Line-Ground Fault at F3 is reclosers PV_1, PV_2, and PV_3 trip to stop injecting into the fault quickly prior to potential damaging TOV.
- DER-RT protection scheme
 - PV_1, PV_2, and PV_3 trip on Timer 2 (negative and zero sequence overvoltage elements) in ~12 cycles
 - Transmission Breakers CB1 and CB2 trip and clear the fault in ~13 cycles

10 cyc

15 cyc

20 cyc

5 cyc

(PV1, DER-RT protection scheme)

TREE = 11:18:33.754000 PM

0 cyc

2

- Ideal response for Line-Ground Fault at F3 is reclosers PV_1, PV_2, and PV_3 trip to stop injecting into the fault quickly prior to potential damaging TOV.
- T-Fault logic
 - PV_1, PV_2, and PV_3 trip on T-FAULT logic in ~5 cycles
 - Transmission Breakers CB1 and CB2 trip and clear the fault in ~13 cycles

(PV1, voltage signature based protection scheme)

- Ideal response for Line-Ground Fault at F4 is reclosers PV_1, PV_2, and PV_3 trip to stop injecting into the fault quickly prior to potential damaging TOV.
- DER-RT protection scheme
 - PV_1, PV_2, and PV_3 trip on Timer 2 (Level 2 overvoltage elements [59-2]) in ~23 cycles
 - Transmission Breakers CB1 and CB2 trip and clear the fault in ~13 cycles
 - Overvoltage condition develops until the DERs trip

COMTRADE Event File for a fault F4 (PV1, DER-RT protection scheme)

- Ideal response for Line-Ground Fault at F4 is reclosers PV_1, PV_2, and PV_3 trip to stop injecting into the fault quickly prior to potential damaging TOV.
- T-Fault logic
 - PV_1, PV_2, and PV_3 fail to trip (Misoperation)
 - Transmission Breakers CB1 and CB2 trip and clear the fault in ~13 cycles
 - Overvoltage condition develops until the DERs trip

COMTRADE Event File for a fault F4 (PV1, voltage signature based protection scheme)

Conclusion

- IEEE 1547 should investigate alternative forms of protection for abnormalities on the system. At minimum, they should create minimum fault current output requirements for DERs.
- High-speed fault signature schemes do not provide 100% reliable protection performance
- The IEEE 1547 "ride-through requirements" are flawed and outdated. As an industry, there is more work to be done in the realm of system stability and ride-through

BUILDING A **SMARTER** ENERGY FUTURE ®