A Fresh Look at Practical Shunt Reactor Protection

Ritwik Chowdhury and Normann Fischer Schweitzer Engineering Laboratories, Inc.

Douglas Taylor Avista Utilities

David Caverly Trench Limited

Ali Dehkordi RTDS Technologies Inc.

Shunt reactor applications

- Regulate system voltage under light loading
- Reactor connections
 - Bus-connected
 - Line-connected
 - Solidly grounded
 - Ground (4th) reactor (SPT applications)
 - Tertiary-connected (typically ungrounded)

Reactor types

Iron core

- Gapped core
- Usually oil-immersed

- Environmental concerns
- Older unit at lower voltage
- Newer units up to 550 kV

Reactor energization

CT saturation (loss of dc) – air-core reactor

Measurement errors

Measurement errors

 $\mathsf{K}_{\mathsf{INRUSH}}$

Measurement errors

Functional overview

Turn-to-turn fault protection

Four-reactor bank protection scheme gains dependability by using both IN and 3I2

Reactor type	50/51 current used	50/67 Zone 1	50/67 Zone 2	51 inverse- time	Reactor type	50/51 current used	50/67 Zone 1	50/67 Zone 2	51 inverse- time
Solidly grounded air-core	Neutral current (IN)	Pickup: 6% Delay: 1.5 cycles			Ungrounded air-core	Negative- sequence current (312)	Pickup: 80% Delay: 1.5 cycles	Pickup: 6% Delay: 3 cycles Arming delay: 30 seconds	Pickup: 10% Curve: U2 Time dial: 6
Solidly grounded iron-core	Neutral current (IN)	Pickup: 50% Delay: 1.5 cycles	Pickup: 6% Delay: 3 cycles Arming delay: 10 seconds	Pickup: 6% Curve: U2 Time dial: 2.5	Ungrounded iron-core	Negative- sequence current (312)	Pickup: 170% Delay: 1.5 cycles	Pickup: 6% Delay: 3 cycles Arming delay: 30 seconds	Pickup: 10% Curve: U2 Time dial: 7

Operating times

34.5 kV MV reactor

- Ungrounded air-core reactor
- Turn fault field event on 34.5 kV, 50 MVAR reactor from Xcel Energy

115 kV HV reactor

- Solidly-grounded air-core reactor
- Turn fault field event on 115 kV, 25 MVAR reactor from Xcel Energy

Turn fault sensitivity

Flux during turn fault

- Iron core presents low-reluctance path and channels faulted flux for complete coupling
- Air-core fault flux scatters and attenuates further from faulted turns

Enter values in green (Radius, Height, & Mmin only needed for air-core reactor type) pu := 1

Reactor turn fault model

Impedance of faulted phase

Turn fault currents

- Air-core reactor sensitivity: 0.2% of turns
- Iron-core reactor sensitivity: 0.1% of turns

How many turns?

Parameter	31	41	51	61	Parameter	1A	2A	3B	3A	4A	5A	6A
Voltage (kV)	230	345	400	500	Voltage (kV)	13.8	34.5	238	238	345	420	500
MVAR	50	150	150	175	MVAR	20	50	50	50	120	120	125
Frequency (Hz)	60	60	50	60	Frequency (Hz)	60	60	60	60	60	50	60
Current (A)	126	251	217	202	Current (A)	837	837	121	121	201	165	144
Winding height (in)	56.7	67.2	59.1	70.9	Radius (in)	60.5	41.3	35.3	66.2	68.1	73.1	68.2
Inductance (mH)	2,806	2,105	3,395	3,789	Inductance (mH)	25.3	63	3,005	3,005	2,631	4,679	5,305
Turns/phase	1,982	1,170	1,470	1,570	Turns/phase	90	207	3,943	2,096	1,834	2,644	3,322

Line reactors

Line de-energization

Reactor differential

Transformer vs. reactor inrush

Iron-core inrush field event

- Field event error
 - Magnitude: 22% error
 - Phase: 27 degrees
- CT guidance, testing, and field experience
 - Magnitude: 25% error
 - Phase: 35 degrees

Iron-core inrush field event

- Secure slopes • $IRT = |I_T + I_N|$ 35% (to 50%)
- IRT = $|I_T + I_N| / 2$ 70% (to 100%)
- $IRT = max(I_T, I_N)$ 60% (to 80%)

BC fault

- Neutral end, 1%–1%
- Neutral-side currents are much greater than terminal-side currents
- 87R1 (no harmonic blocking/restraint) is fast
- 87R2 (with harmonic blocking/restraint) is slow

BC fault

- CT saturation can further slow down 87 element
- Secure slope settings are used instead of harmonics-based security

Ground fault

Dependability for intermittent ground fault on ungrounded reactor or bus

Conclusion

- Reactors require sensitive protection
 - Iron-core presents fire hazard
 - Air-core physics produce lower magnitude turn faults
- Reactor protection security has challenges
 - CT saturation
 - Magnetizing inrush
 - Resonant ringdown

Conclusion

- Turn-fault scheme is fast, secure, and sensitive
 - 67 Zone 1 (1.5 cycles), 67 Zone 2 (3 cycles when armed), and directionally supervised 51 element
 - Sensitivity: 0.1% iron core, 0.2% air core
- 87 element reliably detects phase and ground faults
- REF adds ground fault protection sensitivity in four-reactor banks
- 59G in ungrounded banks benefits from timers for arcing faults

Questions?