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• Statkraft

̵ owns and operates

• ≈ 90 hydro power plants in Norway

• > 340 hydro power plants globally

• Generator protection

̵ includes differential, impedance-based, overcurrent functions

̵ includes also functions specific for generator protection

• presentation overview

̵ shaft overcurrent protection

̵ injection-based 100% stator ground fault protection

̵ generator out-of-phase synchronizing

̵ hydro generator islanding operation

Introduction
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Shaft overcurrent protection
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• When a generator is excited it can induce a voltage 

along the shaft

• This induced voltage is caused by asymmetry in the 

stator core - how high the magnitude of this will be 

depends on the stator construction

• If the shaft voltage is higher than one volt (1V), shaft 

overcurrent protection (or other types of mitigation) 

should be considered



Shaft overcurrent protection
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• Turbine and drive-end bearings are normally grounded

• Non drive-end bearings are normally isolated

• Non drive-end bearings

̵  there is an oil film between the shaft and the bearing

̵ there is insulation between the bearing and ground

̵ normally the shaft voltage will be present between 

the bearing and ground

̵ if the bearing insulation is broken due to a fault, the 

shaft voltage will be present between the shaft and 

the bearing, i.e. over the oil film



Shaft overcurrent protection
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• If this voltage is too high

̵ the oil will lose its electric insulation ability and a 

current will start to flow between the shaft and 

ground through the oil film

̵ if this shaft current is too high

• the oil film will lose its lubrication abilities and the 

bearing may be destroyed

• Statkraft installations – shaft currents of up to ≈70A 

have been measured, but normally the shaft current is 

lower than 10A

• Statkraft practice

̵ 1V induced voltage is the limit to install shaft 

overcurrent

̵ 1A shaft current is considered to be the max allowed



Shaft overcurrent protection
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• Old Solution

̵ use magnetic core CT to measure the shaft current

̵ split core but still bulky and heavy

̵ very difficult to mount in a confined space

̵ requires specialized magnetic material

̵ very low secondary current (500-1000 turns)

̵ secondary winding connected to overcurrent 

protection

̵ difficulties to produce it in recent years



Shaft overcurrent protection
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• New Statkraft solution

̵ Rogowski coil – output is a voltage signal 

proportional to the rate of change of the shaft current

̵ wall-mounted box containing electronic equipment

• located 10m away from the Rogowski coil to 

minimize any influence from stray flux - coaxial 

cable connection

• analog integrator – output is a voltage signal 

proportional to the shaft current magnitude, e.g. 

200mV per 1A shaft current

• amplifier to amplify the output voltage from the 

integrator (40x)

̵ connected to the IED in control room (via 

1.5mm2 twisted pair)



Shaft overcurrent protection
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• New Statkraft solution

̵ amplifier output connected to the voltage input of a 

generator protection IED

̵ precise filtering filters out the required frequency 

component (typically either fundamental or 3rd 

harmonic)

̵ overvoltage protection having two stages (e.g. alarm 

and trip stage) within the IED

• alarm: 0.25Apri

• trip: 0.8Apri



• The Rogowski scheme has been in successful operation in several Statkraft hydro stations for several 

years

• Several new sites/installations are in the pipeline
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Measured voltage by the IED during primary testing Measured voltage by the IED during an actual fault (2021)

Shaft overcurrent protection

̵ 10V corresponds to a shaft current of 1.25A

̵ filter set to 50Hz
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Stator ground fault protection
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• 95% stator ground fault protection

̵ stator ground faults cause a displacement of the generator 

neutral-point voltage – the magnitude of the neutral-point to 

ground voltage depends on where the ground fault occurs

= zero for a ground fault at the neutral-point

= the rated generator Ph-G voltage for a ground fault at the 

terminals

̵ to detect, measure the voltage between the generator 

neutral-point and ground

• even when healthy, a small amount of zero-sequence 

current will flow – the neutral-point therefore has a non-

zero voltage

• a 59N function will not remain selective if set too low

• typical setting: pickup 5% of rated Ph-G voltage →  95% 

stator ground fault protection

Stator ground fault protection
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• 3rd harmonic-based 100% stator ground fault protection 

(100% together with 59N / 51N)

̵ based on measurement of the 3rd harmonic voltages 

generated by the machine

̵ provides stator ground fault protection for the so far 

uncovered last 5%

̵ reason to cover the last 5%: a ground fault at or near 

the neutral-point shunts the high resistance, and so 

poses a serious threat should a second ground fault 

occur elsewhere in the stator winding

̵ drawbacks

• requires machine to be excited and able to generate 

sufficient 3rd harmonic voltage

• cannot detect a ground fault when the machine is at 

standstill

Stator ground fault protection
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• Injection-based 100% stator ground fault protection

̵ main challenge

• injection is done through almost a “short circuit”

̵ e.g. in the case when a GT with secondary 

NGR is used for stator grounding

̵ for very large turbo machines, the NGR can 

have a value as low as 0.05Ω (typically ≤ 1Ω)

̵ limited sensitivity as not much of the injected 

signal power is being transferred to the stator 

(thermal rating of injection equipment limits the 

amount of current which can be injected)

• for a ground fault at the stator terminal a voltage 

will be pushed back onto the injection equipment, 

which must be designed to handle this

Stator ground fault protection
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• Injection-based 100% stator ground fault protection

̵ incorporate a dedicated Signal Injection 

Transformer (SIT) → universal way to inject into 

the stator regardless of the actual grounding 

arrangements

̵ the generator neutral-point must be accessible

̵ reliable 100% stator ground fault protection can 

be achieved by proper SIT design and the level of 

the injected signal – i.e. by ensuring that a 

sufficient amount of the injected signal power is 

transferred into the stator primary circuit

̵ detects a change in the measured impedance 

from a reference value obtained during 

commissioning

Stator ground fault protection
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• Injection-based 100% stator ground fault protection

̵ at Statkraft

• mainly use primary NGR

• injection-based scheme is in successful 

operation on the largest hydro generator in 

Norway as well as at several other installations
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• An OOPS incident is hazardous (high forces and currents that can cause damage) to 

̵ stator windings; rotor damper (amortisseur) windings; shaft; circuit breaker (if it is tripped)

• The forces depend on how big the phase angle was between the generator and grid voltages

̵ the larger the OOPS angle, the larger the OOPS forces (currents)

• From the perspective of the CB

̵ closing for an OOPS is not a problem

̵ opening (trip by protection) following an OOPS exposes the CB to difficult operating conditions

• the large DC time constant of the generator leads to a relatively slow decay of the DC component 

of the current

• fast decrease of the AC component

→ delayed zero-crossings

Generator out-of-phase synchronizing (OOPS)
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• Synchronizing the generator can occur by closing

̵ the generator breaker; the HV breaker (HV-side of the GSU)

• if an OOPS occurs when synchronizing (closing) the HV breaker, the forces on the generator will 

be less than if synchronizing with the generator breaker due to the GSU impedance

• much of Statkraft’s synchronizing is done via the HV breaker – avoids the high inrush currents 

when energizing the GSU from the grid

Generator out-of-phase synchronizing (OOPS)
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• Depending on the OOPS angle, the recovery voltage (RV) and the transient recovery voltage (TRV) 

may be among the highest a circuit breaker may experience

̵ the larger the OOPS angle, the larger the RV, the TRV and the OOPS currents

• Synchronizing via the generator breaker

̵ has an OOP breaking capacity of 50% of the rated short circuit breaking current – may only 

correspond to a 90° out of phase angle

• an OOPS angle of 180° might give a current up to 80% larger than for an OOPS angle of 90°

• an OOPS current should be interrupted within 80-100ms after closing, before the AC component 

becomes too low (causing a delay in the zero-crossing) to ensure a successful interruption

• Synchronizing via the HV breaker

̵ has an OOP breaking capacity of 25% of the rated short circuit breaking current

• an OOPS angle of 180° might give

̵ a current up to 40% larger than for an OOPS angle of 90°

̵ and a 40% increased steepness in the TRV

Generator out-of-phase synchronizing (OOPS)

18



• Real OOPS events

Generator out-of-phase synchronizing (OOPS)
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̵ event 1

• synchronize (close) via HV breaker

• instantaneous trip – GSU HV-side overcurrent

̵ event 2

• synchronize (close) via HV breaker

• trip 533ms after the OOPS – GSU differential – 

should not trip for an OOPS, but due to CT 

saturation the differential current reached the trip 

level after some time



• Simulated OOPS event

̵ close HV breaker, 90° out of phase, protection trip at +0.1s

• the CB internal arcing begins at a very unfavorable moment (the AC component of the current is 

very low, and the current in one of the phases is almost pure DC)

• in this case, for a trip signal with a 0.1s delay (or near to that), the arcing time will be so long 

(51ms) that the circuit breaker would most likely be destroyed

• if the protection were to operate with a longer time delay (e.g. >0.2s), the DC component of the 

OOPS current would be much lower, and current zero crossings would occur, leading to much 

shorter arcing time

Generator out-of-phase synchronizing (OOPS)
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• If an OOPS occurs it is likely that some protection will trip – differential, overcurrent – but an OOPS 

can also occur where no protection trips

̵ the trip may be instantaneous, or in some cases time delayed

• For events 1 and 2, there was no dedicated OOPS protection function

̵ the difference in the trip times was due to other protection functions tripping when their trip 

conditions were fulfilled

̵ this means that the trip signal could occur in a timeframe which is unfavorable for the interruption of 

the OOPS currents, leading to higher arcing times than acceptable and causing possible 

destruction of the circuit breaker

Generator out-of-phase synchronizing (OOPS)
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• The Statkraft philosophy is that the generator (especially its damper windings), shall be inspected 

after an OOPS has occurred

̵ how to know the OOPS has occurred?

• Logic was designed to detect an OOPS incident

Generator out-of-phase synchronizing (OOPS)
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• Statkraft have used this logic for a few years 

now, but only on the largest generators

• Presently only an alarm is given to SCADA by 

this logic (no trip issued)

• Current thinking – no gain by tripping

̵ if the forces are high enough, other protection 

will trip

̵ after an OOPS has occurred it may be harmful 

for the circuit breaker to be tripped

̵ operational experience with this logic is 

limited, so need more experience to trust in its 

security

• to date there has been no unwanted 

operation of this logic

Generator out-of-phase synchronizing (OOPS)
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• Further discussion

̵ if an OOPS occurs should the generator 

always be inspected?

• if the generator isn’t tripped, is it then safe to 

operate it until the next planned outage?

̵ no definitive answer yet, but the discussion is 

ongoing within Statkraft

Generator out-of-phase synchronizing (OOPS)
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• In Norway islanding operation is quite common

̵ the generation shall remain in service

̵ required to withstand and operate for large frequency deviations from the 50Hz rated frequency 

(e.g. ±10Hz – in some parts even up to 70Hz for 10s is possible)

̵ grid code specifies requirements hydro power plants must satisfy – expected to operate normally 

within 45-60Hz

Generator islanding operation
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̵ hydro power generators 

connected to the transmission 

grid

• underfrequency

̵ <45Hz

• overfrequency

̵ normally not used, but is 

permitted – must withstand 

a full load rejection



• The protection relays need to work correctly within the wide frequency range

̵ poses no problem for the generator protection which is fully capable to track and adapt to the actual 

power system frequency

̵ the distance protection on the power lines in the vicinity of the hydro power plants can be a real 

challenge due to the wide frequency range

• the fixed X-reach in ohms will become variable with respect to the distance to fault due to the 

frequency excursion

• line differential protection can be a possible better solution

Generator islanding operation
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• Several important but quite special protection functions/functionality for generator protection have 

been described

• Regardless of the complexity of such protection functions/functionalities, they can be implemented in 

a modern protection IED

Conclusions
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