A Voltage-Controlled Overcurrent based Adaptive Protection Scheme for Microgrids

Co-Author & presenter:

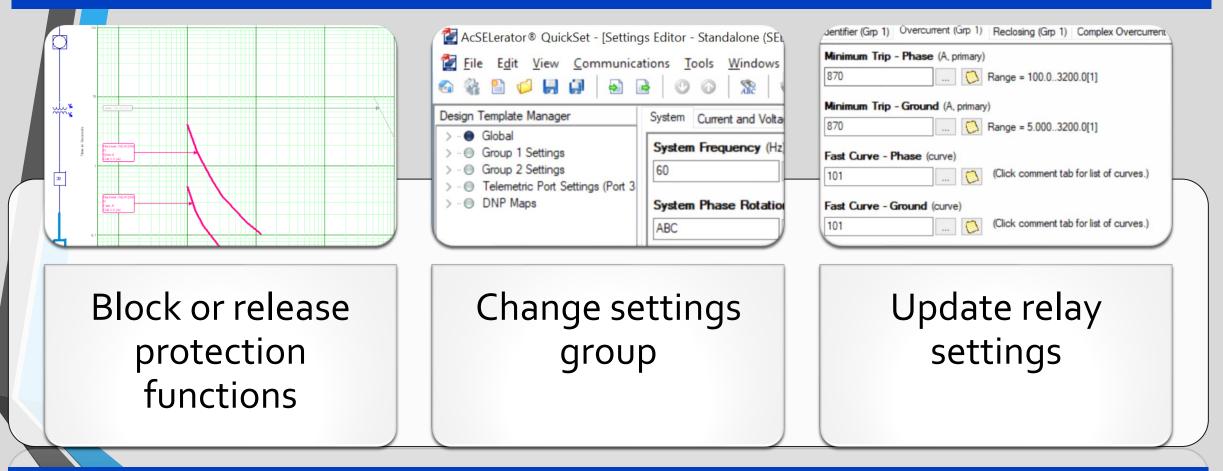
Tapas Kumar Barik, tbarik@epri.com

Acknowledgement

- Adaptive Protection to Enable Deployment of High Penetrations of Solar PV (PV-MOD) project
- Special thanks to Co-authors:
 - Quanta Technology LLC: Amin Zamani, Mehrdad Sheikholeslami
 - Electric Power Research Institute (EPRI): Aadityaa Padmanabhan, Mobolaji Bello, Sean McGuinness

Background on DOE PV-MOD Project

Develop vendor-independent adaptive protection (AP) designs


Demonstrate advanced application of the new models for automated assessment and design of adaptive distribution protection schemes

Demonstrate correct operation using simulations and lab-tests of siteand hardware-specific implementations

Deploy and test protection schemes on various types of networks

Adaptive Protection

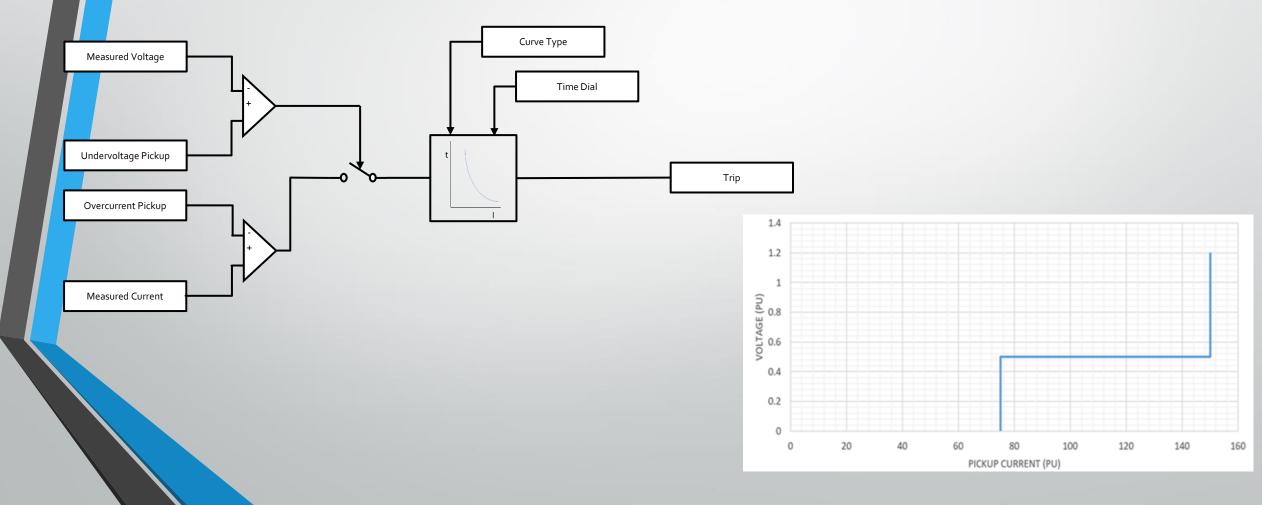
Broad definition: Anything that changes how protection responds to faults

Triggers can be commands, time or measurements

Microgrid Protection Challenges

- Sensitivity and Safety
 - Low fault currents
 - Will overcurrent devices operate?
 - Set for grid connected operation
 - Slow tripping = Higher arc-flash levels
 - Is the microgrid effectively grounded?
 - Coordinate with IBR undervoltage protection
- Reliability
 - Is coordination possible with series protection devices?

Other Protection Considerations

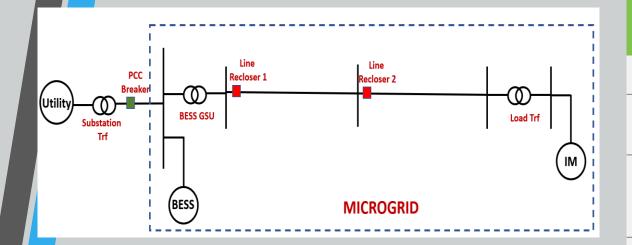

- If infrequently operated in islanded mode, reduced protection sensitivity may be an acceptable alternative to expensive protection upgrades
- Recloser fast curves may provide fast protection without major changes
- Undervoltage elements offer a simple method to clear faults
- Need to consider the impact of grounding transformer failure, if used, on protection scheme operation
- Need to understand the impact of synchronous condenser failure, if used, on protection scheme operation

Microgrid Adaptive Protection Overview

- Centralized or decentralized design
- Easy to deploy
- Supplements existing protection design and logic
 - Trips for all credible faults within the microgrid
 - Does not trip incorrectly during soft or hard black starts
 - Does not trip during transformer inrush
 - Does not trip during block loading, motor-starting, or cold-load pickup

Voltage Controlled Overcurrent logic

- Requires 1 phase separated voltage stage and 1 phase separated current stage
- Can be easily implemented in many modern IEDs

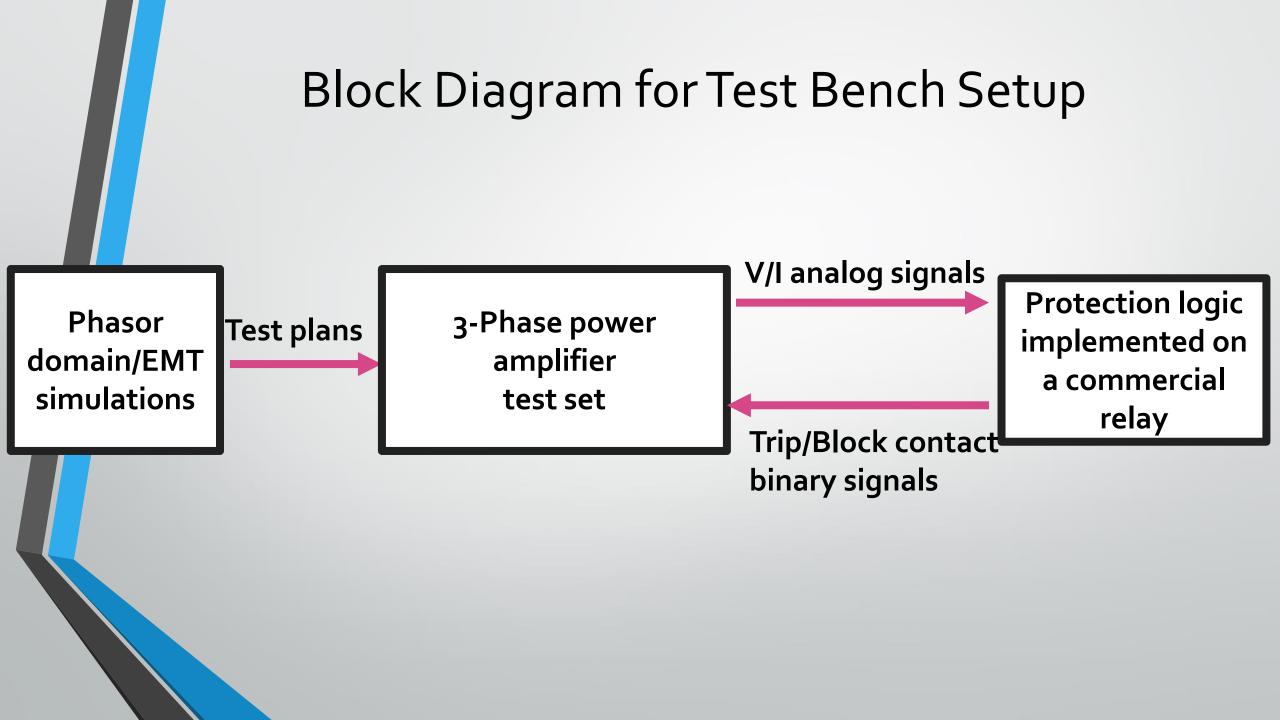

Microgrid Adaptive Protection Overview

	Centralized Microgrid Adaptive Protection	De-centralized Microgrid Adaptive Protection			
Islanded Mode	 Voltage-Controlled Overcurrent 50/51C Example settings: Undervoltage pickup 0.8pu Inverse overcurrent pickup equal to 50% of the current in islanded mode 				
Grid-Connected Mode	Conventional inverse time overcurrent	 Enable inverse time overcurrent used if the measured current exceeds a set threshold Enable voltage-controlled overcurrent for large voltage sags are the current does not exceed a set threshold Threshold current = 120% of the maximum short circuit current in island-mode. If current is in excess of this value, then the microgrid must be grid-connected, so the voltage-controlled overcurrent element will be blocked. 			

Laboratory Tests

Scenarios Simulated

- Islanded Mode Faults
- Soft Start Faults
- Hard Start Faults
- Motor Start Various Sizes
- Transformer Energization Various Sizes



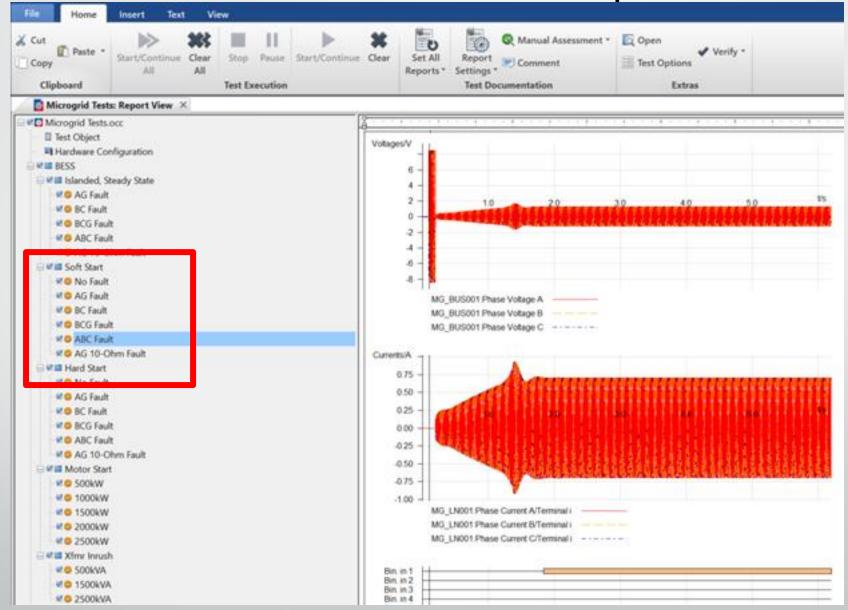
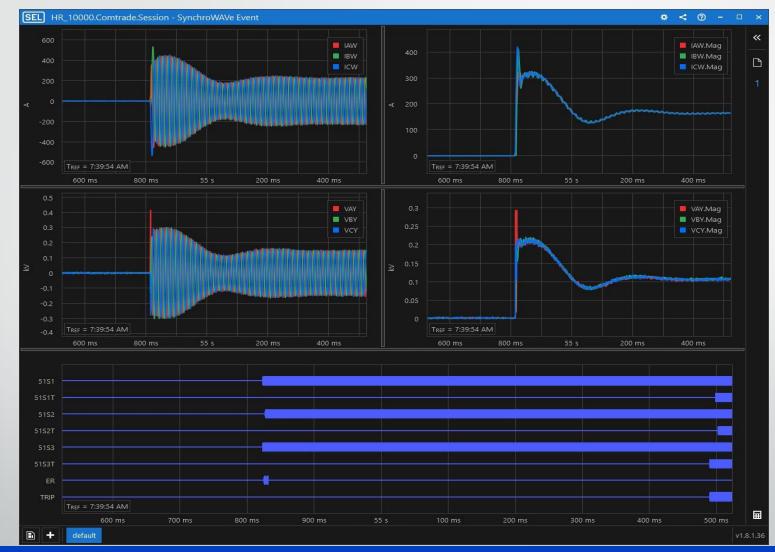
Equipment	Nameplate Specifications
BESS	3MVA, 400V, 0.95 pf
BESS GSU	3.75MVA, 12.47/0.4kV Dyno %Z = 7, X/R = 20
Overall Feeder section	Length=4 mi, R1 = 0.016 ohm/mi, X1 = 0.16 ohm/mi, Ro = 0.048 ohm/mi, Xo = 0.48 ohm/mi
Load Transformers	0.5MVA — 3 MVA in size, 12.47/0.4kV Dyno, %Z = 7, X/R = 20
Induction Motor	0.25-2.5 MW 0.4kV 0.82 pf

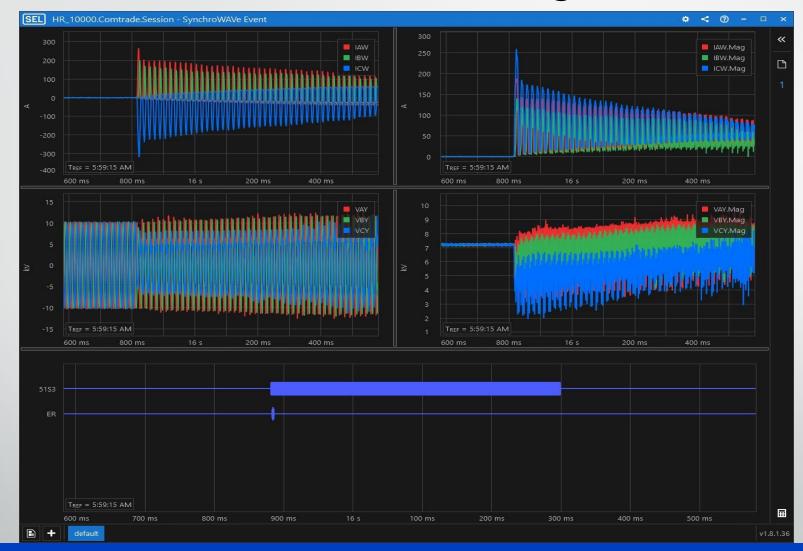
Microgrid Adaptive Protection Test Cases

ABC, BC, BCG, AG, and AG with Rf = 10 Ohms Faults Simulated

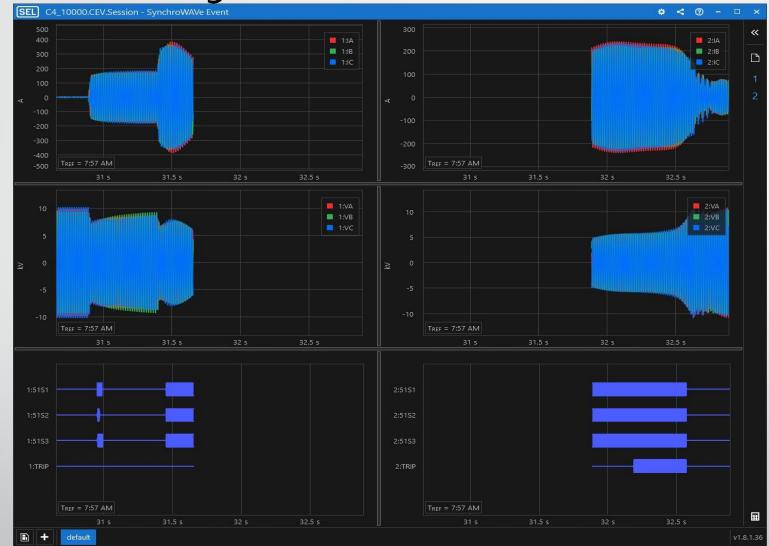
- Hard Start
- Soft Start
- Islanded Operation
- Motor Starting Condition
 - 500-2500kW induction motors, in steps of 500kW
- Transformer Energization
 - **5**00-2500kVA transformers, in steps of 1000kVA

Test Plan Document Example

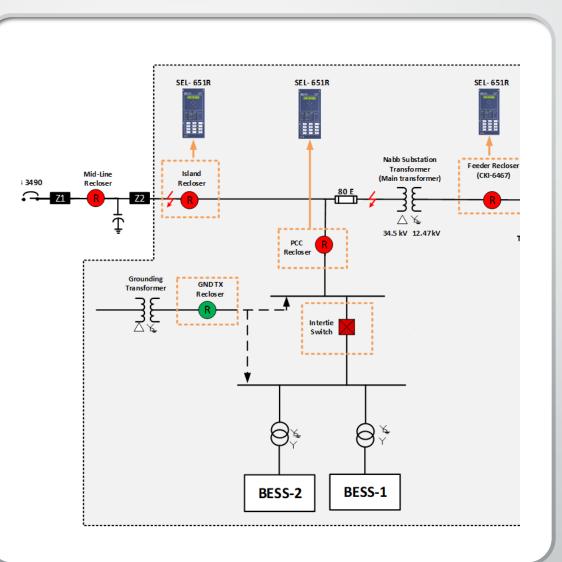

Fig: Snippet of a sample test plan document

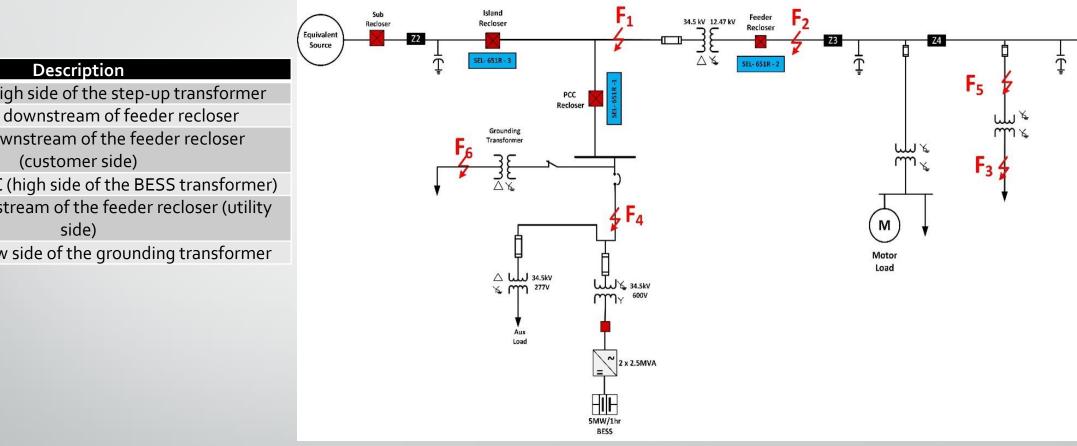
Hard Start – ABC Fault


Successful Trip

1500kVA Transformer Energization

Successful No Trip


2500kW Motor Start


Element Misoperation

HIL Testing

- Recloser Controllers
 - Islanding recloser, SEL-651R
 - PCC recloser, SEL-651R
 - Feeder recloser, SEL-651R
- Over 96 test cases
 - Faults (phase and ground)
 - Black start
 - Transformer energization
 - BESS state changes
 - BESS trip

HIL Test fault locations

Faults	Description
F,	Faults at the high side of the step-up transformer
F ₂	Close fault downstream of feeder recloser
F ₃	Far fault downstream of the feeder recloser
	(customer side)
F_	Fault at the PCC (high side of the BESS transformer)
F ₅	Far fault downstream of the feeder recloser (utility side)
F ₆	Fault on the low side of the grounding transformer

HIL Test Results

- The detects detects majority of faults.
- 5 faults at F3 remained undetected.
 - ✓ The fault currents are very low to be sensed by 51 elements.
 - The faults do not cause adequate under-voltage condition to allow voltage-based protection to operate.
 - ✓ Only solid SLG faults at F3 can be detected (they do generate large ground currents which activate the unsupervised 50G element).
- Faults at F6 remained undetected.

Case No	ISL	РСС	FDR	Tripping	Tripping	Tripping	Tripping	Pass/Fail
Case No	Rec.	Rec.	Rec.	Element 1	Element 2	Time 1 (s)	Time 2 (s)	1 033/1 011
Case1073		1		50		0.8425		Pass
Case 1074		1		50		0.8462		Pass
Case 1075		1		50		0.8443		Pass
Case 1076			1	50G		0.5756		Pass
Case 1077			1	50		0.6507		Pass
Case 1078			1	50		0.6151		Pass
Case 1079			1	50G		0.5924		Pass
Case 1080								Fail (No Trip)
Case 1081								Fail (No Trip)
Case 1082		1		27		2.51		Pass
Case 1083		1		27		2.68		Pass
Case 1084		1		27		2.51		Pass
Case 1085			1	50G		0.58		Pass
Case 1086			1	50		0.6216		Pass
Case 1087			1	50		0.6146		Pass
Case 1088								Fail (No Trip)
Case 1089		1		27		2.511		Pass
Case 1090		1		27		2.518		Pass
Case 1091		1		50 ⁹		0.8459		Pass
Case 1092		1		50		0.8427		Pass
Case 1093		1		50		0.8439		Pass
Case 1094		2	1	50G	27	0.5753	2.278	Pass
Case 1095			1	50		0.6166		Pass
Case 1096			1	50		0.6197		Pass
Case 1097								Fail (No Trip)
Case 1098								Fail (No Trip)
Case 1099								Fail (No Trip)
Case 1100		1		27		2.511		Pass
Case 1101		1		27		2.695		Pass
Case 1102		1		27		2.511		Pass
Case 1103			1	50		0.5773		Pass
Case 1104			1	50		0.6179		Pass
Case 1105			1	50		0.6178		Pass
Case 1106								Fail (No Trip)
Case 1107								Fail (No Trip)
Case 1108								Fail (No Trip)

HIL Testing Conclusions

- EMT studies and HIL testing were done to thoroughly examine the proposed scheme
 - Three recloser controllers were used for HIL testing
- Results show that the scheme can appropriately detect and isolate majority of faults
 - High-impedance fault and secondary faults (downstream the service or grounding transformer) are not detected reliably
- Results indicate that the proposed APS does not trip falsely during the transients or contingencies scenarios such as black start, motor starts up, and transformer energization

Thank You & Questions?