

TEXAS A&M UNIVERSITY RELAY CONFERENCE | MARCH 28-30, 2023 | COLLEGE STATION, TX

Virtualized wide-area protection, Anti-islanding protection using 5G communication

Joe Xavier¹, Anna Kulmala¹, Ontrei Raipala¹, Petri Hovila¹, Boris Yazadzhiyan², Rui Dantas², Colin Scoble² ¹ABB Distribution Solutions ²UK Power Networks, United Kingdom

Contents

- Introduction
- Who is UK Power Networks?
- Motivation for the research
- UK Power Networks network model
- What is protection virtualization?
- Proposed protection concept
- Simulation results
- Conclusion

Introduction

- Power system operators are looking to deploy novel intelligent solutions to maximize efficiency and reliability of the distribution networks
- Need for modernizing protection solutions to accommodate the distributed energy resources (DERs) without compromising safety
- Constellation is an innovation project initiated by UK Power Networks to develop and demonstrate decentralized protection and control architecture

Who is UK Power Networks?

8.4M homes and businesses 29% of UK Total

9.8GW Distributed Generation Connected 32% of UK Total

70,888GWh electricity distributed 28% of UK Total

UKPN motivation for the research

Keeping generation connected in a Net Zero future

Situation

Complication

Increased reliance on DSO services, such as Flexibility

Unnecessary disconnection of DERs

Increased connection of low carbon generation and load

Availability of network capacity

Solution roll out based on hardware installation

Scalability across a large network

Virtualization of protection and control

Next step in centralized protection and control

Virtualized protection requirements

To guarantee real-time and reliable performance:

- Based on IEC 61850 standard
- Voltage and current Sampled Values from the MU are to be received with a consistent and low enough network latency
- Access to the computing resource must be available when the application needs it
- Accurate time synchronization using precision time protocol (PTP)
- Redundancy via parallel substation computers and parallel redundancy protocol (PRP)

Proposed protection concept

- All protection functions are virtualized centrally in a substation computer
 - Virtualization software environment runs several applications in parallel
- IEDs at each bay act as the MU with back up protection enabled
- Protections include functions based on local measurements and inputs from multiple remote sites
- All information exchange in the WAP uses GOOSE, SV, R-GOOSE over 5G communication

Virtualized wide-area protection

- Dedicated ROCOF (LoM) protection is applied to prevent unintentional islanding
- Wide-area protection using R-GOOSE over 5G

Simulation set up

Simulations focus on testing the operation of wide-area protection and communication supervision

ROCOF simulation - unwanted tripping

Local ROCOF based blocking

- System frequency decreases from 50 Hz to 49 Hz at a rate of change of -2 Hz/s
- Consequently, all four DG units in the examined system see a ROCOF of approximately -2Hz/s
- The local ROCOF-based anti-islanding .protection is triggered
- The blocking is not effective resulting in all four DG units to trip falsely

Wide area ROCOF based blocking

Prevents unwanted tripping

- Wide area detection logic was enabled
- This time the wide area disturbance is detected by the primary substation IED, which in turn sends blocking messages via R-GOOSE to all four DG units.
- Consequently, no unwanted tripping occurred

Transfer trip over 5G communication

- Three-phase short circuit occurs at the beginning of the outgoing feeder SPENS 03 (DER unit 3 is connected to this feeder)
- SPENS 03 CB trips
- Main substation computer sends transfer trip signal to DER site computer via 5G communication
- DER site computer issues trip command to DG3 CB
- DG3 CB opens

Conclusion

- Protection and control need to be modernized as the amount of DERs increases day-by-day
- Wide-area protection concept utilizing virtualization and wireless 5G communication has been developed to enhance system resiliency
- The wide-area protection ensures:
 - Prevention of unintentional islanding
 - Unsynchronized reclosing
 - To keep the DERs connected during system-wide disturbances
- Correct operation of the wide-area protection functionality has been verified in the lab
- Next steps of the Constellation project include integration testing in the lab and field trials

QUESTIONS?