Prevent False Tripping Due to Grounding Bank Backfeed

Jeremy Blair Schweitzer Engineering Laboratories, Inc.

Richie Matson Southern Pine Electric Cooperative

Electric Cooperative Background

problem

Southern Pine Electric Cooperative

- Was chartered in March 1938 to serve 481 homes and farms
- Is one of the largest electric cooperatives in the country, with more than 10,000 miles of energized line serving more than 68,000 meters
- Serves 11-county service area encompassing 14.3% of total land mass of Mississippi

- Fault between feeder breaker and recloser
- Feeder breaker tripped to lockout
- Recloser also tripped to lockout

One-line diagram

Consumer site

- Consumer owns multiple wye-delta transformers
- Motors are mostly 2,400 V
- Loads are all 3 W, so requested 3 W service

Consumer-owned transformers

- Feeder lockout required personnel to open and clear feeder breaker to find and repair feeder fault
- After fault was found and repaired, personnel returned to substation and put feeder breaker back into service
- After power was restored to only part of feeder, personnel then drove ten miles to the recloser to close it and restore service to remaining consumers

Sequential Event Recorders

Feeder Recloser Asserted 636 12/21/20 08:03:36.980 51P1 12/21/20 OUT103 Asserted 635 08:03:36.980 634 12/21/20 08:03:37.018 51N1 Deasserted 302 12/21/20 08:04:17.033 SH1 Deasserted 633 12/21/20 08:03:37.022 51P1 Deasserted 301 12/21/20 08:04:17.033 SH0 Asserted 632 12/21/20 08:03:37.026 OUT103 Deasserted 12/24/20 Asserted 631 01:05:17.658 51P1 300 12/24/20 01:05:17.740 51G1T Asserted 12/24/20 01:05:17.662 51N1 Asserted 630 299 12/24/20 01:05:17.740 79CY Asserted 12/24/20 01:05:17.662 Asserted 629 OUT103 628 12/24/20 01:05:18.579 51N1 Deasserted 298 12/24/20 01:05:17.740 79RS Deasserted 12/24/20 627 01:05:18.808 51P1T Asserted 297 12/24/20 01:05:17.740 TRIP Asserted 12/24/20 79CY Asserted 626 01:05:18.808 625 12/24/20 01:05:18.808 79RS Deasserted 296 12/24/20 01:05:17.819 52A Deasserted 624 12/24/20 01:05:18.808 OUT101 Asserted 295 12/24/20 01:05:17.828 51G1T Deasserted 12/24/20 623 01:05:18.808 **OUT104** Asserted 622 12/24/20 01:05:18.808 TRIP Asserted 294 12/24/20 01:05:17.849 59A1 Deasserted 621 12/24/20 01:05:18.825 IN105 Deasserted

Event record

- Once inception of fault occurs, purely zero-sequence current is present
- This zero-sequence current causes the 51G elements to pickup and then initiate a TRIP
- Currents can be high enough to pick up 51P elements as well

Why...Wye (grounded) – delta transformer?

- Grounding bank for DER
 - Limits overvoltage on unfaulted phases
 - Allows DER to use impedance grounding
 - Alternatively, a zigzag grounding bank may be applied in parallel with DER service; any grounding bank has the same effect
- Provide four-wire delta service
- Provide customer with three-wire, three-phase service
 - Consumer insists on ungrounded connection
 - Better to provide four-wire, three-phase service

Fault analysis with grounding bank

Example feeder with grounding bank

Cases with red dash are at risk of incorrect trip

Example feeder: sequence networks

Example feeder: Fault F1

Fault F1 seen by recloser

Example feeder: Fault F2

Fault F2 seen by recloser

Solutions

- Desensitize 51G
 - Reduces dependability for ground faults
 - May be acceptable for small grounding banks
- Use directional overcurrent
 - Is secure and dependable
 - Requires three-phase voltage measurement

- Use 50Q supervision
 - Is secure and dependable
 - Is easy to set
 - Needs only current measurements
 - Can be applied in legacy electronic recloser installations

Desensitize 51G

 $Rf \leq \frac{7,200 \,\mathrm{V}}{200 \,\mathrm{A}}$ $Rf \leq 36 \,\Omega$

- Is this adequate resistive coverage?
- Is this a worstcase event?

Forward ground fault

Forward ground fault phasors

Color	Name	Mag	Angle
	V0	0.53775 kV	177.66°
	10	219.763 A	–87.36°

Reverse ground fault

Reverse ground fault phasors

Color	Name	Mag	Angle
	V0	1.09079 kV	178.39°
	10	176.768 A	125.8°

 $12 \ge 10$ in forward single-line-to-ground fault

 $12 \ge 10$ in forward double-line-to-ground fault

I2<<I0 in reverse single-line-to-ground fault

I2<<I0 in reverse double-line-to-ground fault

50Q supervision How to set

51G supervision

- 1. Set 50Q pickup = 51G pickup
- 2. Run when 50Q = 1

50Q supervision How to set

- 51P supervision
- 1. Set 50Q pickup = 51G pickup
- 2. Set 50G pickup = 51G pickup

Run when

- 1. 50G = 0 (not a ground fault)
- 2. 50Q = 1 (forward unbalanced fault)
- 3. NOT (50G OR 50Q) = 1 (three-phase fault)
- 4. Simplifies to (NOT 50G OR 50Q)

F2 with 50Q supervision

F1 with 50Q supervision

Conclusion

- Grounded-wye delta transformers threaten security of traditional radial distribution protection
- Classical solutions require voltage measurements not available with some legacy reclosers
- 50Q supervised solution secures traditional protection schemes without equipment upgrades
- 50Q supervised solution works on radial systems or systems with only one strong source

Questions?