Novel Methods for Detecting Conductor Breaks in Power Lines

Kanchanrao Dase, James Colwell, and Shreenivas Pai Schweitzer Engineering Laboratories, Inc.

Series arcing through disconnect switch

$$V_{ARC_{OC}} = I_{P} \bullet Z_{P} = I \bullet Z_{P}$$

Series arcing through disconnect switch

Current through series arc

Voltage across series arc

Series arcing in a power line

Detecting series arc through current reduction

Double-ended approach of estimating phase resistance

Single-ended approach of estimating phase resistance

Detecting series arc through the estimation of phase resistance

Benefits of the proposed methods

- Single-ended methods
- Early detection of broken conductor

Benefits of the proposed methods

Loss-of-load detection

Detection of conductor breaks in tapped feeders

Validating the proposed methods through field events

Validating the proposed methods through field events

- Average Series Arcing Duration
- Average Time to Detect Series Arcing Through Current Reduction Method
- Average Time to Detect Series Arcing Through Phase Resistance Monitoring Method

Performance analysis of other methods

Event	Terminal	Voltage Level (kV)	ΔV _{PH} (pu)	ΔV ₀ (pu)	ΔV ₂ (pu)	ΔΖ (pu)
1	Local	220	-0.005	< 0.026	< 0.019	6
	Remote		0.001			135
2	Local	138	-0.018			151
	Remote		0.006			139
3	Local	110	-0.032			23
	Remote		0.011			23
4	NA	220	0.003			9
5	NA	138	-0.019			14

Conclusion

- Detection of broken conductors was successful by using the proposed single-ended methods
- The proposed methods can work for transmission, sub-transmission systems, tapped feeders, and distribution systems
- Field events have shown no significant change in voltage magnitudes before and after the conductor break
- Methods that rely on change in impedance may have less dependability for lines with significant charging current

Questions?