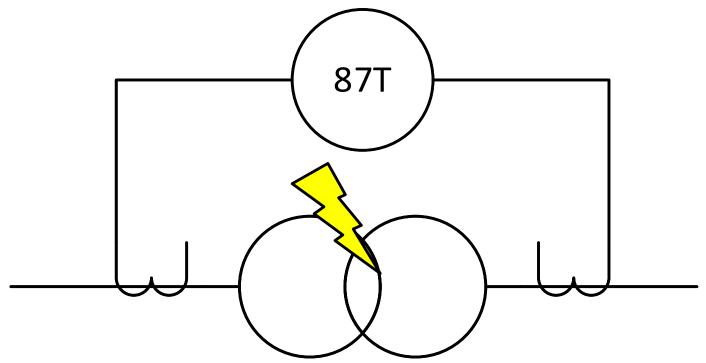
Improved Transformer Condition Monitoring with Practical through-fault Detection Algorithm

Venkatesh Rokkam, Emmoji Vundekari – GE Grid Solutions Presenter: Justin Turner – GE Grid Solutions

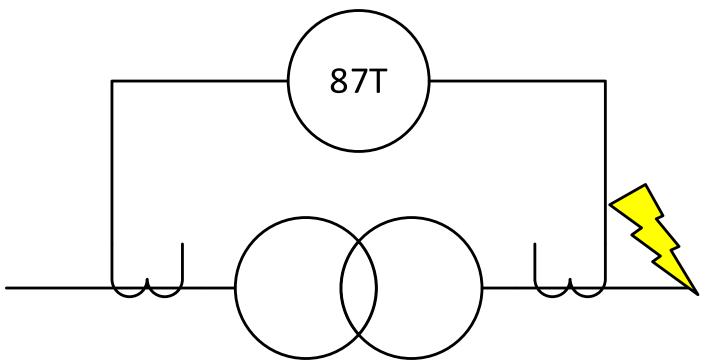

Transformer protection Impact of through faults Improved through-fault algorithm Testing

Transformer zone of protection

Transformers are critical assets

Differential protection guards against internal faults

Zone of protection is around transformer



Transformer through-faults cause excessive current

Faults outside differential zone of protection

Excessive currents not detected by differential protection

Transformer life is reduced

Transformer category ratings

Class I, II, and some III are mostly distribution transformers Class III and IV are transmission transformers Transmission transformers protected with digital relays

Category	Single phase (kVA)	Three phase (kVA)
Ι	1-500	15-500
П	501-1667	501-5000
Ш	1668–10,000	5001-30,000
IV	>10,000	> 30,000

Transformer short-time thermal load capability

Transformer can withstand excess current for limited time

IEEE differentiates between faults and possible overloads by using two slope characteristics

For Category III and IV withstand based on transformer short-circuit impedance

Time (s)	Times rated current
2	25
10	11
30	6.3
60	4.5
300	3
1800	2

Transformer withstand capability curves

IEEE Std. C57.109-2018 and IEEE Std. C57.12.59-2015 provide maximum through-fault current duration limit curves

Curves based on:

$$p^{X}?\tilde{n}, c$$
 Eq. 1

Where k is constant determined at maximum current at time t = 2 seconds

Consequently

$$c, I_{N}^{X}?\tilde{n}, X_{1}^{X}?X, WX_{1} U$$
 Eq. 2

Where $I_b = 25$ A is base current per IEEE standards

Smaller current increases maximum tolerable time

Maximum tolerable time for smaller magnitude faults is longer and can be estimated

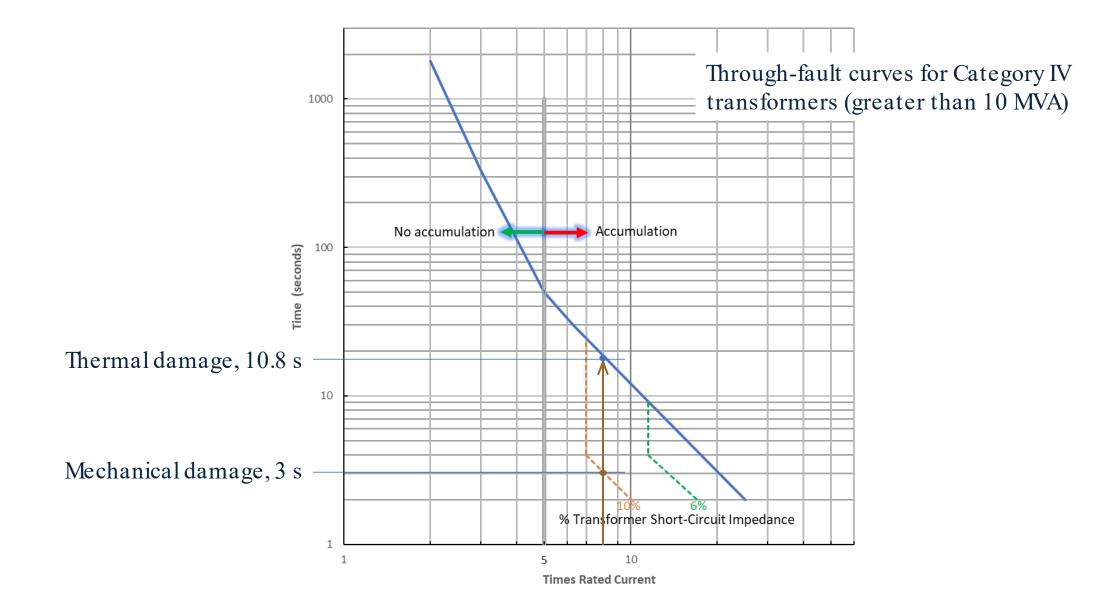
$$\tilde{n}_{\text{JUS}} , \frac{W\!X\![U]}{N\!U\!!} \cdot X\![N], Z:U^{\wedge} \ddot{i}, \tilde{n}_{\text{US}} , \frac{W\!X\![U]}{N\!U\!!} \cdot X\![N], ^{\wedge} \ddot{i} \qquad \text{Eq. 3}$$

Different transformer impedances reduce maximum short-circuit magnitudes PWUS, WUS, WUS, WUI $\phi = PWUS$, WUS, WUS, WIS [1 ϕ Eq. 4

Short-circuit magnitude for 70% at 4.08 s

$$\begin{array}{c} CWU \\ P \\ US \\ WUS \\ WUS \\ WVS \\ WVS \\ \end{array},] i \acute{o} = P \\ P \\ US \\ VS \\ VS \\ VS \\ VS \\ VS \\ \end{array}, WW] i \acute{o} Eq. 5$$

Impact on transformer monitoring


Larger current: less time

Smaller current: more time

IEEE standards mute on accumulating faults above and below 50% of maximum possible current Accumulation left to algorithm implementation

Transformer	Symmetrical short -circuit current (pu of winding rated)			
impedance (%)	$100\% \bullet I_{M}, t = 2 s$	$70\% \bullet I_{M}, t = 4.08 \text{ s}$	$50\% \bullet I_{M}, t = 8 s$	
4 (base)	25	17.5	12.5	
6	16.67	11.67	8.33	
8	12.5	8.75	6.25	
10	10	7	5	

Through-fault curves

10

Improved transformer-monitoring algorithm

Use single accumulator per phase and per winding to obtain accumulation quantity Category IV example:

$$\{ o y | \&ns \{ h \ddot{O} \ddot{O} b e \}, \Sigma_U^{\hat{e}} \stackrel{\underline{h} e^{\hat{A}} \cdot \Omega \tilde{n} \hat{e}}{s \tilde{a} \hat{e}} 1 z \hat{a} \tilde{n} M \delta N$$
 Eq. 8

Where $p_{\tilde{e}}$ is n fault current magnitude; $\Omega \tilde{h}_{\tilde{e}}$ is n fault duration; Lim is defined as If $p_{\tilde{e}} 0 U$:[• $p_{\tilde{e}}$ (large magnitude): s \tilde{a} , $X • p_{\tilde{e}}^X$ Eq. 9 Otherwise (small magnitude): s \tilde{a} , W(U

For larger magnitude faults, accumulation is faster, based on 2-s requirement

For smaller magnitude faults, accumulation is slower, based on 1250 limit

Improved algorithm example

Category IV transformer, Z% = 8, $I_M = 12.5$ pu, through-fault duration = 0.1 s

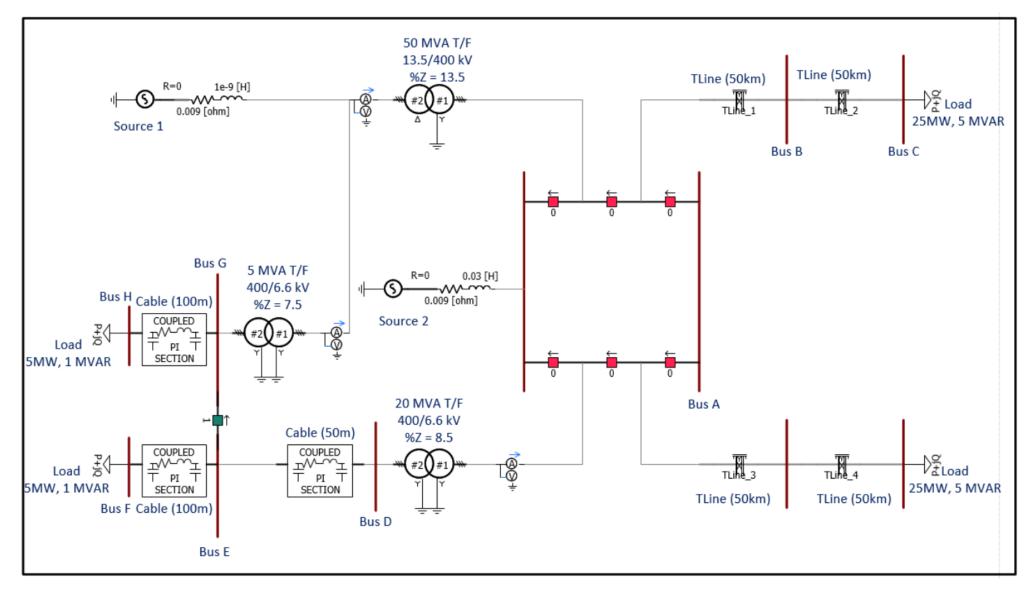
l _n (pu)	l _M (pu)) ∆t _n (s) <i>THRU_FLT</i> _ <i>Accum</i> (pu)	THRU_FLT	# of faults	
			((1pu/THRU _FLT_Accu		
12.5	12.5	0.1	0.05	20	
10	12.5	0.1	0.032	31	
8	12.5	0.1	0.0205	48	
6	12.5	0.1	0.0029	347	

Accumulation and faults tolerated for same-magnitude fault per IEEE standards

Required settings

Setting	Purpose
CT SOURCE	Single CT or dual CT (2 circuit breakers)
GROUP COMPENSATION	For CTs outside delta winding; divides current by $\sqrt{3}$ to obtain winding current
RATED MVA: 100.000	MVA of monitored winding; derive base current
RATED PHS-PHS KV	Rated voltage of monitored winding
WINDING CATEGORY	Transformer Category I, II, III, or IV; to apply proper curve, per standard
MAX FAULT CURRENT	Maximum through-fault current derived from transformer Z% impedance
FREQUENT FLT LEVEL	Threshold for Category II and III for different curves for frequent and infrequent faults
TOTAL ACCUMULATION MAX	Threshold for element output when accumulation exceeds max tolerable
FAULT COUNTER MAX	Through-fault count threshold to alarm
RESET/PRESET ACCUMULATION	Set known value from old relay

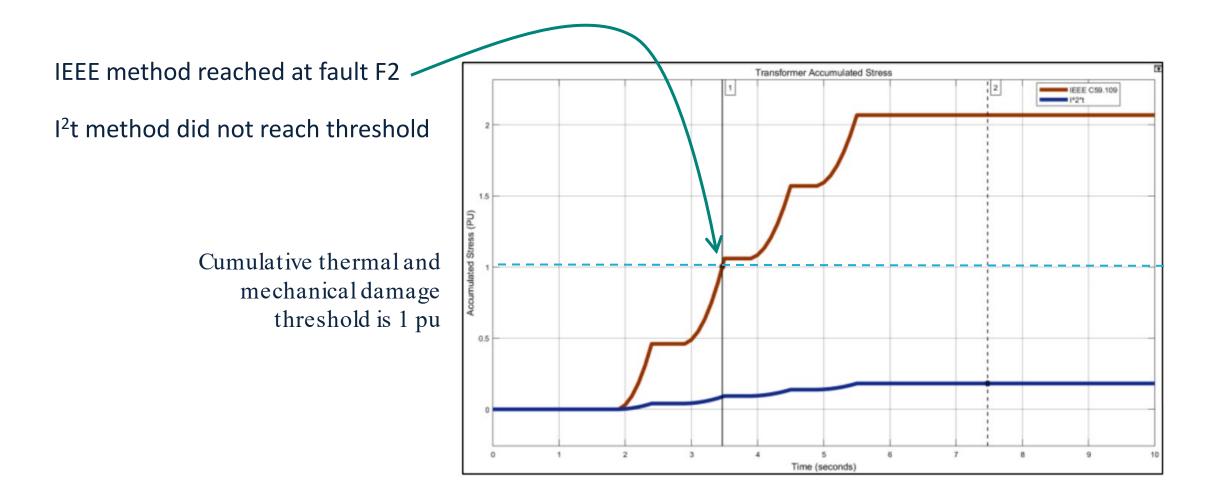
Monitored values


Count of through faults, per phase, per winding Total accumulation, per phase, per winding Through-fault time per each event Through-fault accumulation per each event Through-fault duration per each event Through-fault maximum current, per each event, per each phase

🚥 Transformer Through Fault // Local: 39: Actual Val 🗖 💷 🔀 🛛				
😫 Save 🔛 Restore 🔛 Default 🔛 Reset VIEW AL				
PARAMETER	MONITOR1			
Cnt A	2			
Cnt B	5			
Cnt C	5			
Total Acc A	0.018 pu			
Total Acc B	0.073 pu			
Total Acc C	0.049 pu			
Ev1 Time	Monday, September 21, 2020 10:03:52 AM			
Ev1 Duration	12.5 cyc			
Ev1 Max Cur A	10.37 pu			
Ev1 Max Cur B	15.58 pu			
Ev1 Max Cur C	4.15 pu			
Ev1 Acc A	0.0073 pu			
Ev1 Acc B	0.0163 pu			
Ev1 Acc C	0.0000 pu			

Visualize and analyze through-fault events accumulation; plan predictive maintenance in advance

	DADADADAD
Industrial address of the second s	
DRUGRURURURURURURU N <mark>o zreze</mark> nsko zaprapra provinsko zapra provinsko zapra Na provinsko zapra provinsko z Na provinsko zapra provinsko zapra Na provinsko zapra pr	AIDAIDAIDA AIDAIDAIDA
	IRAIDAIDIADIA EXILATIDA Irain (iraina) anna iraina
THRU FLT 1 TOT ACC A Accumulated	cumulation>setting
THRU FLT 1 TOT ACC B	
THRU FLT 1 TOT ACC C	Output asserted
THRU FLT 1 ACC OP A	
THRU FLT 1 EVE START	


Test system (EMTP / PSCAD)

Study Category IV transformer (50 MVA, 13.5 / 400 kV, %Z = 13.5)

Fault label	$R_{F}(\Omega)$	Location	Fault type	l _F (pu)	t _F (s)
F1	0	Bus A	ШG	7.07	0.45
F2	10	Bus A	LG	5.6	0.55
F3	0	Bus B	LG	5.3	0.58
F4	10	Bus B	LG	5.12	0.59
F5	10	Bus C	LG	3.6	0.65
F6	15	Bus C	LG	3.4	0.68

Test results compare IEEE and I²t methods

Conclusions

It is important to monitor through faults to schedule maintenance

Large-magnitude faults cause more mechanical damage than thermal damage

Greater mechanical stress shortens transformer life

IEEE Std C57.109-2018 and IEEE Std C57.12.59-2015 provide maximum through-fault, current-duration limit curves

IEEE method provides better performance compared to conventional I²t method

