Experiences Testing a Busbar Protection Using Process Bus with Simultaneous Injection in all Bays

Alex Takeda – ISA CTEEP João Jorge – OMICRON electronics Luiza Pio – GE

Presenter: Eugenio Carvalheira – OMICRON electronics

76th Annual Conference for Protective Relay Engineers March 27-30, 2023

Challenges of a conventional integrated Busbar Protection Test

- Quantity of equipment
- Quantity of people
- Wiring assembly and simulation obstacles
- Time synchronization of test sets
- Simulation of circuit breaker failure
- Calculation of short circuit values
- Test 2 bays at a time with only 1 test set
- Test multiple bays at a time with many test sets and multiple GPS, separate test files and reports

Schematic of conventional test solution

Single-line diagram of Lorena Sub (230kV) (1st Fully Digital Substation of ISA CTEEP)

Full Digital test scheme proposed with system-based software

- Everything connected over the network
- Each test set publishes up to 4 streams of Sampled Values (1 SV = 1 Bay)
- Time Synch via PTPv2 Simulation and Injection of Real Transient Signals from system model
- Test scenarios defined by ISA CTEEP

ISA CTEEP – SE LORENA Simplified Busbar Protection Architecture

Full Digital test scheme proposed with system-based software

- Everything connected over the network
- Each test set publishes up to 4 streams of Sampled Values (1 SV = 1 Bay)
- Time Synch via PTPv2 Simulation and Injection of Real Transient Signals from system model
- Test scenarios defined by ISA CTEEP

Full Digital test scheme proposed with system-based software

- Simulation of circuit breakers and disconnectors contacts via software through GOOSE
- Simulation of faults inside and outside the protected busbar
- System modeling with the equivalent Thevenin source of each bay for injection of realistic short circuit currents
- CT saturation by inserting CT's nameplate data into the system model

Validate simulated streams

- Sniffer the network prior to start the test
- Check that there are no conflicts between the simulated SV and GOOSE and those present in the network
- Avoid duplicate signals on the network

Warning: If you continue, real GOOSEs and Sampled	Values will be output!	
GOOSEs to be simulated	Simulation flag	Found on network
G MUA_LA - CTRL/LLN0.FastGOOSE1	Yes	✓ No duplicate
G MUA_LC - CTRL/LLN0.FastGOOSE1	Yes	✓ No duplicate
G MUA_LD - CTRL/LLN0.FastGOOSE1	Yes	✓ No duplicate
G MUA_LB - CTRL/LLN0.FastGOOSE1	Yes	✓ No duplicate
G MUA_TIE - CTRL/LLN0.FastGOOSE1	Yes	✓ No duplicate
G MUA_T3 - CTRL/LLN0.FastGOOSE1	Yes	✓ No duplicate
Sampled Values to be simulated	Simulation flag	Found on network
SV MUA_LA - MUA_LA0101	Yes	✓ No duplicate
SV MUA_LB - MUA_LB0101	Yes	✓ No duplicate
SV MUA_LC - MUA_LC0101	Yes	✓ No duplicate
SV MUA_LD - MUA_LD0101	Yes	✓ No duplicate
SV MUA_TIE - MUA_TIE0101	Yes	✓ No duplicate
SV MUA_T3 - MUA_T30101	Yes	✓ No duplicate

Simulation Mode

- From IEC 61850 Ed 2
- Method for virtual/digital isolation of digital data during test

IED

GoID=1

System Configuration Files

Data such as SvID, appID, priority, vlan, etc taken automatically from imported SCL files (*.cid) of Merging Units

Datasets 9-2-LE

MU LA	Available signals	L Outgoing Sampled Values						
 品 Device connections 体 General settings 小 Simulated binary outputs 	TC LA 3xI →	SV MUA_LA0101 Properties						
→ Simulated Dinary Outputs LEC 61850 Control Control Contr		Control block attributes MUA_LAMU01/LLN0\$MS\$MUA_LA Sampling frequency: 4800 Hz Destination MAC address: 01:0C:CD:04:00:AA Frames per second: 4800 Application ID: 16384 Sampling mode: Samples per cycle Sample rate: 80 80 Hz Number of ASDUs: 1 128 Hz VLAN ripririty: 4 Hz Hz						
		Configuration revision: 1 Voltages:						
		A: Select to map a signal. B: Select to map a signal. C: Select to map a signal. N: Will be calculated - or select to map a signal.						
		Currents:						
		A: B: TC LA - 3xl C:						
		N: Will be calculated - or select to map a signal.						

• Time Synchronization

- All test sets and IEDs synchronized by the same source GMC PTP
- PTP profile selected: IEC/IEEE 61850-9-3: 2016 (Utility Profile)

Example of settings from GPS RT430

РТР	
Enable PTP	•
Profile	Power Utility - IEC/IEEE 61850-9-3/2011 V
Domain number	0
Network protocol	Ethernet level 2 VLAN I id 0x0005 priority 0
Operation mode	One step 🔹
Delay mechanism	Peer-to-Peer 🔻
Grandmaster priority	#1 128 #2 128
Force operation as	Slave
Delay request interval	1 second (0) 🔻
Announce interval	1 second (0) 🔻
Sync interval	1 second (0) 🔻
Announce receipt timeout	3
Send Alternate Time TLV	
Send local time	Enabled

CT realistic simulation

Nameplate data representing the nonlinear saturation behavior of the CTs in each bay during the simulation of the transients published through Sampled Values

 Data taken from Lorena Substation CT's nameplate (TPY)

	₩ ▼ 12 ▼ <mark>N</mark> ∦	- 111% 🔹 + 52 23	🛱 TC LA	
			Name:	TC LA
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · ·		Show label
ISA CTEEP - SE LORENA	· · · · · · · · · · · · · · · · · · ·	Proteção de Barras	Туре:	Three-phase
Subestação Full Digital G		GE B30	Rated prim. current:	2.0000 kA
	UPBP Subnetwork CMCs		Rated sec. current:	1.0000 A
Bay 1 Bay	🛂 CT Data	X	Polarity:	Toggle
	 Use customizable preset: Import CT Analyzer report: 	TPY Choose report	Dynamic behavior:	 Ideal transformer Simulate saturation
	CT data		These settings will onl cases in which CT satu enabled.	y affect simulation test ration simulation is
· · · · · · ● · · \ · · · · · ●	Winding resistance (Rct):	3.3000 Ω	Edit CT da	ta
	Rated burden (Sbn):	8.0000 VA	Circulate terrelia e unor	
	Rated symm. short-circuit current factor (Kssc):	25.0	pulses:	×
	Transient dim. factor (Ktd):	7.3		
· ₀⊨ơ ⊨	Operating burden (Sb):	100.00 %		
		E		
SE Santa Cabeça SE Santa (
, , , , C2 , , , , , , C ²				
		Done		

52a and 52b simulation

Simulation of circuit breakers and disconnectors contacts via software (considering the timing values for movement of the contacts) through GOOSE

MU LB	Outgoing GOOSEs		Binary traces
Device connections	Simulate unmapped GOOSEs: 📃 🗙		л CB52b - DJ LB Aberto ×
· · · · · · · · · · · · · · · · · · ·	G MUA_LB - CTRL/LLN0.FastGOOSE1 GOOSE settings	Network: Subnetwork CMCs 🔻	Automatically simulated DA CTRL/BININGGIO1.Ind1.stVal
🖏 IEC 61850	CTRL/BININGGI01.Ind1.q	00000000000 →	false 🖵 true
월 IEC 61850 setup - Simulated GOOSE outputs	CTRL/BININGGIO1.Ind2.q	00000000000 →	
우 Trip/close logic	DA CTRL/BININGGIO1.Ind3.q	00000000000 →	A CTRL/BININGGIO1.Ind2.stVal
SV Simulated Sampled Values	DA CTRL/BININGGIO1.Ind4.q	00000000000 →	false 🖵 true
	DA CTRL/BININGGIO1.Ind5.q	00000000000 →	
	DA CTRL/BININGGIO1.Ind6.q	00000000000 →	
	CTRL/BININGGIO1.Ind7.q	00000000000 →	DA CTRL/BININGGIO1.Ind3.stVa
	DA CTRL/BININGGIO1.Ind8.q	00000000000 →	false _ true
	DA CTRL/BININGGIO1.Ind9.q	00000000000 →	
	CTRL/BININGGIO1.Ind10.q	00000000000 →	CB52a C - DJ LB - Fechado X
	CTRL/BININGGIO1.Ind11.q	00000000000 →	DA CTRL/BININGGIO1.Ind4.stVal
	CTRL/BININGGIO1.Ind12.q	00000000000 →	false 🖵 true
	DA CTRL/BININGGIO1.Ind1.stVal	Boolean 🕰	

52a and 52b simulation

Configure Auxiliary Contact Simula	ation		>
Times: Absolute 🗸			
Circuit breaker opening		Circuit breaker closing	
	Trip Current flow CB52a CB52b		Close Current flow CB52a CB52b
52a CB not closed: 52b CB open:	22.0 ms	52a CB closed: 52b CB not open:	55.0 ms
CB52a: Per pole	•	CB52b: One for all three poles	•
			Done

Timers of the Simulation Setup from the reception of a Trip or Closing command

Example of published and subscribed data

Simultaneous Current published in all Bays

3-Phase Fault on Busbar 4

After clearing the fault, the bays that weren't connected to the Busbar 4 continued to feed normal currents (bays LA, LC and TR3) and the current of the other bays were interrupted after the simulated CB opening time

Transients after CB reaction

Simulation of the opening CB currents in each bay through iterations

Trip

• Test Assessment

Results based on predetermined criteria for operating times or non-operation of each bay

Test set	case Closed-Loop Add Delete fault	plicate Delete test steps	♦ Up ♦ Down	Vary Define meters measuremen	Set assessment conditions	Assess Clea manually - result	ar Export to COMTRADE	Copy graphics to clipboard					
	Setup	Manage Test St	eps	Define Test	Steps	Results							
\$	🖙 😓 Faltas Barra 4	Falta no nó 1 - F F	Falta no nó 1 - F	TRIP 87 LA 🔹 🕨	TRIP 87 LB	TRIP 87 LC	TRIP 87 LD	TRIP 87 TR3	TRIP 87 TIE	86 Barra 3 🔹 🕨	86 Barra 4	Time stamp	Comment
	1 📀 Passed	A-N	0.0000 Ω	+∞	10.7 ms	+∞	10.7 ms	+∞	10.7 ms	+∞	10.9 ms	2020-07-20 14:16:45 🔗	
×	2 📀 Passed	B-N	0.0000 Ω	+00	10.4 ms	+00	10.4 ms	+00	10.4 ms	+00	10.7 ms	2020-07-20 14:26:29 🔗	
	3 📀 Passed	C-N	0.0000 Ω	+∞	9.7 ms	+∞	9.7 ms	+∞	9.7 ms	+∞	9.9 ms	2020-07-20 14:30:07 🔗	
	4 📀 Passed	A-B	0.0000 Ω	+00	10.7 ms	+00	10.7 ms	+00	10.7 ms	+00	10.8 ms	2020-07-20 14:34:03 🔗	
	5 📀 Passed	B-C	0.0000 Ω	+∞	10.4 ms	+00	10.4 ms	+00	10.4 ms	+00	10.6 ms	2020-07-20 14:38:15 🔗	
	6 🕑 Passed	C-A	0.0000 Ω	+∞	10.3 ms	+00	10.3 ms	+00	10.3 ms	+00	10.5 ms	2020-07-20 14:42:22 🔗	
	7 🤣 Passed 🔹	A-B-C	0.0000 Ω	+∞	9.7 ms	+∞	9.7 ms	+∞	9.7 ms	+∞	9.9 ms	2020-07-20 14:50:25 🔗	1 - Carlos Carlo

Performed tests

- Stability and polarity tests
- Faults in both busbars with different bay connection topologies (according to ISA CTEEP script)
- Transfer Topology
- "Busbar Totalization" test
- END Fault
- Breaker Failure

Test report

Cost Benefit Analysis

	Conventional Single Phase	System Based	Conventional 3 Phase
Time for initial preparation (hours)	12	8	8
Time for test preparation (hours)	0.5	0.25	0.5
Quantity of tests	120	40	40
Total time (hours)	72	18	28
Number of engineers	1	1	3
Engineer man-hour cost	4 <mark>X</mark>	Х	4,66 <mark>X</mark>
Quantity of Test Sets	1	2	3
Test set rental (R\$/hour)	100	100	100
GPS rental (R\$/hour)	0	0	87.5
Total	3,33 <mark>Y</mark>	Y	4,11 <mark>Y</mark>

Conclusions

- Busbar protection testing by simultaneous injection in all bays and using realistic transient signals calculated from power system simulation software
- Enormous time and cost savings with the use of this test method
- Great gain in quality when applying this method compared to the traditional way
- Test technology applied in full digital substations must evolve and be applied using all the test features provided by the standard
- IEDs compatible with IEC61850 Ed 2.1, as well as PTP DAN GPS and transparent PTP switches allow the application of modern testing tools, which were widely used in Lorena Substation

Questions?