Distance Relay AcceleratorAchieving SubcycleOperation Time

Zhiying Zhang, Ilia Voloh, Hengxu Ha,Zhiwu Fu- GE Grid Solutions
Presenter: Mike Ramlachan- GE Grid Solutions

Agenda

- Introduction
- Short window phasor estimation algorithm with decaying DC accounted
-CVT transients and mitigation methods
- Voltage and current phasors used in the subcycle distance algorithm, tripping count strategy
- Arming and overall protection logic
- Performance evaluations
-Conclusions

Introduction

- Distance relays are to date widely used in transmission line protection, due to use of the local terminal voltage and current signals only.
- Distance elements provide good selectivity, easy to set and used in both stepdistance and pilot schemes.
-To prevent overreach, prfiltering to remove decaying DC in current signals and CVT transients in voltage signals is required.

Introduction

-Distance relays speed is essential especially for EHV or UHV applications. Suldycle operation time for the distance underreach zones is desirable.

- Faster fault clearing improves system stability, reduces the stress on power transformers, reduces equipment damages.
-Traditional full cycle DFT operation time is $11 / 2$ cycles or longer. One of solutions to improve speedpibaselet based algorithms.

Introduction

Phaselet-based algorithms are faster, but less accurate than

 the full cycle DFT based algorithms

Introduction

This results in higher transients' errors

Introduction

- In this paper, a new algorithm is presented, in which voltage and current phasors are estimated through two short window orthogonal filters with decaying DC accounted for.
-With additional filtering, averaging, switching, and tripping count strategy, both subcycle operation time and accuracy (transient overreach less than 5\%) for the underreach zones of distance elements can be achieved.

ShorthWindow|PhasertiEstimation

Most significant challenge for fast speed and still accurate impedance estimation is to remove DCcomponent. AC signal can be described as:

$$
i(n)=I D \cdot e^{-\frac{T_{s}}{T_{N}} \cdot n}+I_{P} \cdot \cos \left(\frac{2 \pi}{N} \cdot n\right)
$$

Based on the Eular's equation, can be re-written as:

$$
i(n)=I_{D} \cdot z_{0}^{n}+\frac{\dot{I}_{P}}{2} \cdot z_{1}^{n}+\frac{\bar{I}_{P}}{2} \cdot \bar{z}_{2}^{n}
$$

Goal is to extract I_{P} component from the unknown variables

ShortMWindow|PhasertiEstimation

With 3 or more known AC signal samples, the unknown variables (I_{D}, \dot{I}_{P} and \bar{I}_{P}) can be worked out

ShortMWindow|PhasertiEstimation

Using inverse matrix to solve unknown variables, following is defined.

$$
X=\overbrace{\mathrm{H}}^{\left(M^{T} M\right)^{-1} M^{T} \cdot I}
$$

Further h coefficients are obtained from the $2^{\text {nd }}$ raw of H matrix

$$
h(1: W)=H(2,1: W)
$$

Short window fundamental phasor $\dot{I}_{P}(n)$ without DC component can be obtained by

$$
\dot{I}_{P}(n)=\sum_{k=1}^{W} h(k) i(n-k+1)
$$

ShortMWindow|PhasertiEstimation

CVITTinanisients camdidAlitigatiornMHethods

Secondary voltage

 obtained from a passive CVT with SIR=30, AG fault at 80% of line

Secondary voltage obtained from an active CVT with SIR=30, AG fault at 80% of line

CVITTinanisients camdidAlitigatiornMHethods

CVITTHranisients camdidAditigatiornMHethods

CVITT-

- Active CVTtransients are more severe than from a passive CVT and are more difficult to filter out.
- CVTtransients at high SIR are much severe than that at low SIR.
- The most severe CVTtransients when fault occurs near zero crossing of the primary voltage.

CVITTinanisientscamdidAitigatiornMHethods

- CVTtransients is the major cause of the distance element overreach.
- Severalmethods are used to address the transient overreach in distance elements, including:
- Reach reduction
- Additional delay
- Application of filtering to remove CVTtransients
- Combination of above methods based on certain logic, such as SIR detection, CVTtransient detection, etc.

CVITTinanisients camdidAlitigatiornMHethods

Filtering technique is commonly used by microprocessor relays.

Sulbcycle Distance Algorithm

Sulbcycle Distance Algorithm

- The sub-cycle phasor magnitude and long window size phasor magnitude with prefiltering from passive CVTat SIR $=30$ are plotted below.

Sulbcycle Distance Algorithm

TiripppingCCounstiSteategy

Additional measures have been taken to further reduce transient overreach, in which Tripping Count Strategy is applied

PhasesSetection||Supieivision

To obtain sub-cycle speed, very fast fault type supervision is needed

Ph-Ph Delta I / Loop selected	A	B	C	AB	BC	CA
$\Delta \mathrm{I}$ AB Valid	yes	yes	no	yes	no	no
$\Delta \mathrm{I}$ BC Valid	no	yes	yes	no	yes	no
$\Delta \mathrm{I}$ CA Valid	yes	no	yes	no	no	yes

ArmingcanddOQvertâtdProtectioniLogic

ArmingcanddOQverailtdProtectioniLogic

Perfformance: Evaluations

60 Hz
Phase Distance Operating Time Curves - Magnetic VT

Ground Distance Operating Time Curves - Magnetic VT

Perfformancévevaltiations

60 Hz

Perfformance: Evaluations

60 Hz

Phase Distance Operating Time Curves - Active CVT
35

10

5

0
$\begin{array}{lccccc}0 & 20 \% & 40 \% & 60 \% & 70 \% & 80 \%\end{array}$

Ground Distance Operating Time Curves - Active CVT

0

o	20\%	40\%	60\%	70\%	®0\%\%
Fault Location (\% of reach)					

Condusions

- Short window-based phasor estimation algorithm with decaying DC accounted for can achieve distance sub cycle operation time.
- The subcycle distance algorithm only acts as an accelerator and is a complement to the regular full cycle Fourier phasofbased distance element.
- Regular full cycle Fourier phasdrased distance element remains always functional therefore the dependability of the overall distance protection is not affected at all.

Condusions

- The novel short window phasor estimation method removes decaying DC and CVT transients effectively.
- Additional filtering, averaging, switching, and tripping count strategy ensures security. Transient overreach is less than 5\% for SIR up to 60 with both magnetic VTs and CVTs applications.
- Different filtering techniques are applied to different VT types.

ThrankłYou

Questions?

