Comparative Analysis of Distribution Lines Falling Conductor Protection Methods

Matthew Webster, Alfredo Marquez, Kiet Tran, Arturo Torres - Southern California Edison Company Yujie Yin, Charles Adewole, Daniel Ransom - GE Grid Solutions Presenter: Craig Wester – GE Grid Solutions

Our discussion today

Challenges for distribution systems Falling-conductor detection methods Current based Voltage based Impedance based

Challenges for distribution systems

Broken-conductor detection schemes for transmission systems might not work effectively for complex distribution systems

- Large DER penetration
- Advanced distribution automation
- Feeder reconfiguration
- Varying load profiles
- Single-phase switching and fusing
- Mixed, overhead lines and underground cables

Falling-conductor and arcing-fault detection time

Broken, falling-conductor protection, FCP

Trip before line becomes downed conductor

Current-based; I2/I1 ratio

Voltage-based (loss of voltage, rate-of-change of voltage)

Impedance-based (Vand Imeasurements)

Scalable to multiple relays per line / feeder

 $Image \ reference: https://resources.gegridsolutions.com/services/white-paper-high-speed-falling-conductor-protection-in-distribution-systems-using-synchrophasor-data and the services and the services of the services of the service of the services of the services of the service of the ser$

Downed-conductor methods

HIF—single relay / feeder based Transient ground-fault detection—TGFD

Arcing, high-impedance fault (HIF)

Energized conductor contacts quasi-insulating object

- Tree, pole
- Structure or ground

Hi-Z fault produces current levels of mAto 100 A Not detected by fuses and conventional overcurrent

Little threat of damage to power system equipment, but is safety and fire hazard

Current-based FCP

I2 / I1 broken-conductor detection method

I2 / I1 broken-conductor not dependable

Not dependable detection

- Large CTR
- Lightly loaded lines

I2 / I1 broken-conductor detection challenges

Specific to two terminal lines

Overreaches in series lines

Misoperates for distant faults because of line mutual coupling

Needs coordination with existing primary and backup protection system—increases operating time

Voltage-based FCP

Voltage-based FCP

Loss of voltage / rate of change

Sequence voltages

Voltage measurements at multiple locations

Voltage study system

Positive-sequence voltage rate of change

Results-positive-sequence voltage rate of change

Performance does not deteriorate in presence of DER and light loading Must have measurements at both ends

Large cost Impractical in distribution systems Further testing needed (voltage variations) VAr compensation (FACTS) Voltage regulators

Tap-changing transformers

Negative-sequence voltage rate of change

s

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Results-negative-sequence voltage rate of change

Performance deteriorates in presence of system loading Difficult to determine pick-up setting for dependable assertion Must have measurements at both ends Large cost Impractical in distribution systems Further testing needed (voltage variations)

VAr compensation (FACTS)

Voltage regulators

Tap-changing transformers

Zero-sequence voltage rate of change

Results-zero-sequence voltage rate of change

Performance deteriorates in presence of system loading Difficult to determine pick-up setting for dependable assertion Must have measurements at both ends Large cost Impractical in distribution systems Further testing needed (voltage variations) VAr compensation (FACTS) Voltage regulators

Tap-changing transformers

Impedance based FCP

Impedance based FCP calculations

1. Calculate the load impedances

$$Z_{ag} = \frac{V_a}{I_a} \qquad Z_{bg} = \frac{V_b}{I_b} \qquad Z_{cg} = \frac{V_c}{I_c}$$
(1)
$$Z_{ab} = \frac{V_a - V_b}{I_a - I_b} \qquad Z_{bc} = \frac{V_b - V_c}{I_b - I_c} \qquad Z_{ca} = \frac{V_c - V_a}{I_c - I_a}$$
(2)

2. Calculate Impedance Change Ratio (ICR) δZ for phase-to-ground and phase-to-phase

$$\delta_{C}, \quad \frac{|C| \quad C'}{C'}$$

$$\delta_{Z} = \frac{|Z|}{|Z'|} - 1 \quad (3)$$

$$\begin{bmatrix} \delta_{Zag} \\ \delta_{Zbg} \\ \delta_{Zcg} \end{bmatrix} = \begin{bmatrix} \frac{|Zag|}{|Z'_{ag}|} - 1 \\ \frac{|Zbg|}{|Z'_{bg}|} - 1 \\ \frac{|Zbg|}{|Z'_{bg}|} - 1 \\ \frac{|Zcg|}{|Z'_{cg}|} - 1 \end{bmatrix}$$

$$\begin{bmatrix} \delta_{Zab} \\ \delta_{Zbc} \\ \delta_{Zca} \end{bmatrix} = \begin{bmatrix} \frac{|Zab|}{|Z'_{ab}|} - 1 \\ \frac{|Zbc|}{|Z'_{bc}|} - 1 \\ \frac{|Zbc|}{|Z'_{cd}|} - 1 \\ \frac{|Zca|}{|Z'_{ca}|} - 1 \end{bmatrix}$$

Impedance change ratio, ICR

Line break causes voltage and current changes Impedance rises

Impedance change ratio, ICR, gives definite indication of line break

Phase-A broken conductor

Impedance based sliding window

Block diagram of impedance calculation / setpoints

FCP logic blocked

Any phase current is less than or greater than threshold Any phase voltage is beyond defined healthy level Single-phase fault condition identified PT secondary fuse blown Feeder power fuse blown because of short-circuit fault

Loading effects on sepoint threshold and minimum current change

Approximate Minimum Current Change Required for BCD Function (% of Max Load)

PMUarchitecture

HFCP is substation solution

- Real-time controller
- Covers multiple distribution feeders
- PMUs installed at selected locations along feeder and at substation
- PMUs at each location operate independently
- Coordination implemented between substation PMU and downstream PMUs
- IP-based communication between PMUs and GPG over fiber, radio, and cellular

Impedance based FCP study system

Case 1: smalcurrent Phase-Aline open

Case 2: threephase load drop

Case 3: larger load current on Phaseopen

Conclusions

Detect broken conductor quickly to avoid wildfires and improve safety Current-based I2/II detection performs poorly because of feeder loading Positive-sequence voltage detection performs well with DER and light loading Voltage methods depend on measurements at both line ends; impractical for distribution systems Impedance-based FCP are effective with light loading and DERs

Questions?