

Capacitor Bank Unbalance Protection Calculations and Sensitivity Analysis

Bogdan Kasztenny and Satish Samineni Schweitzer Engineering Laboratories, Inc.

Outline

- Common bank configurations and unbalance protection methods
- Capacitor unit arrangement, failure model, and the per-unit system
- Review of unbalance calculation equations
- Unbalance derivations explained
- Application to settings calculations
- Analysis and insights

Common bank configurations Grounded single-wye

Unbalance protection

- 87V
- 50Q / 51Q / 50QT
- 21C

Common bank configurations Ungrounded single-wye

Unbalance protection

- 59NU
- 59NT
- 50Q / 51Q / 50QT

Common bank configurations Grounded double-wye

Unbalance protection

- 87V (tap-bus, tap-tap)
- 60P
- 60N
- 50Q / 51Q / 50QT
- 21C

Common bank configurations Ungrounded double-wye

Unbalance protection

- 87V (tap-tap)
- 60P
- 60N
- 59NU
- 59NT
- 50Q / 51Q / 50QT

Common bank configurations Grounded H-bridge

Unbalance protection

- 87V (tap-bus)
- 60P
- 60N
- 50Q / 51Q / 50QT
- 21C

Common bank configurations Ungrounded H-bridge

Unbalance protection

- 60P
-60N
- 59NU
- 59NT
- 50Q / 51Q / 50QT

Motivation
 Present approach

- Setting unbalance protection elements (alarm, trip) requires calculating their operating signals for unit failures
- Short-circuit programs do not support capacitor bank failure calculations
- Step-by-step calculations or home-made software used instead
- Weak justification for selecting alarm vs. trip thresholds

Motivation
 Our approach

- One-step calculations for
- All common bank configurations
- All applicable unbalance protection elements
- Fail-open and fail-short scenarios
- Unbalance signal as (1) a function of failure size and (2) a function of healthy unit overvoltage
- Settings calculations
- Alarm based on failure size
- Trip before overvoltage breaches unit voltage rating

What is a one-step calculation? Ungrounded double-wye bank

Basic bank data:
P number of units in a group
S number of groups in a string
R number of strings in a phase
T per-unit 87 V tap position
Basic failure data:
F number of failed units
Fused bank (fail-open scenario)

What is a one-step calculation? Ungrounded double-wye bank

$$
\begin{aligned}
& V_{59 N}=\frac{F}{6 S P R-F(6 S R-6 R+1)} \\
& V_{87}=\frac{6 T F}{6 S R P-F\left(6 S R-\frac{6 R-5 T-1}{1-T}\right)} \\
& 3 I_{2}=\frac{3 F}{6 S P R-F(6 S R-6 R+1)} \\
& I_{60 P}=\frac{3 F}{6 S P R-F(6 S R-6 R+1)} \\
& I_{60 N}=\frac{1}{2} \frac{3 F}{6 S P R-F(6 S R-6 R+1)}
\end{aligned}
$$

Capacitor unit arrangement

- For simplicity and symmetry, we use the same model for
- Fuseless banks
- Internally fused banks
- Externally fused banks
- Not all combinations apply to practical banks, but
- All practical banks are covered by our calculations

Capacitor unit failure models Fail-open scenario

Capacitor unit failure models Fail-short scenario

Failure

Per-unit system

- Per-unit short-circuit calculations serve us well in many applications
- In per unit, the capacitor unbalance calculations simplify considerably
- In per unit, it is easy to spot errors and see patterns

Base voltage
 phase-to-ground system nominal voltage

Base current

bank current under nominal system voltage

Base reactance

base voltage / base current

Secondary value per-unit value - base value / instrument transformer ratio

Key output of this work

- Appendix A
- One page for each bank configuration
- Fail-open and fail-short columns
- Self-contained reference material

GROUNDED SINGLE-WYE CAPACITOR BANK

Fail-Open	Fail-Short
$\begin{aligned} \mathrm{k}_{\mathrm{ov}} & =\frac{\mathrm{SP}}{\mathrm{SP}-\mathrm{F}(\mathrm{~S}-1)} \\ \mathrm{F} & =\frac{\mathrm{SP}}{\mathrm{~S}-1} \frac{\mathrm{k}_{\mathrm{ov}}-1}{\mathrm{k}_{\mathrm{ov}}} \end{aligned}$	$\begin{aligned} & \mathrm{k}_{\mathrm{OV}}=\frac{\mathrm{S}}{\mathrm{~S}-\mathrm{F}} \\ & \mathrm{~F}=\mathrm{S} \frac{\mathrm{k}_{\mathrm{ov}}-1}{\mathrm{k}_{\mathrm{OV}}} \end{aligned}$
$\begin{gathered} 3 \mathrm{I}_{2}=\frac{\mathrm{F}}{\mathrm{SRP}-\mathrm{F}(\mathrm{SR}-\mathrm{R})} 1 \angle-90^{\circ} \\ 3 \mathrm{I}_{2}=\frac{\mathrm{k}_{\mathrm{ov}}-1}{\mathrm{R}(\mathrm{~S}-1)} 1 \angle-90^{\circ} \end{gathered}$	$\begin{aligned} & 3 \mathrm{I}_{2}=\frac{\mathrm{F}}{\mathrm{SR}-\mathrm{FR}} 1 \angle 90^{\circ} \\ & 3 \mathrm{I}_{2}=\frac{\mathrm{k}_{\mathrm{OV}}-1}{\mathrm{R}} 1 \angle 90^{\circ} \end{aligned}$
$\begin{aligned} \Delta \mathrm{X}_{\mathrm{PHASE}} & =\frac{\mathrm{F}}{\mathrm{SRP}-\mathrm{F}(\mathrm{SR}-\mathrm{R}+1)} \\ \Delta \mathrm{X}_{\mathrm{PHASE}} & =\frac{\mathrm{k}_{\mathrm{OV}}-1}{\mathrm{R}(\mathrm{~S}-1)+1-\mathrm{k}_{\mathrm{oV}}} \end{aligned}$	$\begin{aligned} \Delta \mathrm{X}_{\mathrm{PHASE}} & =-\frac{\mathrm{F}}{\mathrm{SR}-\mathrm{F}(\mathrm{R}-1)} \\ \Delta \mathrm{X}_{\mathrm{PHASE}} & =-\frac{\mathrm{k}_{\mathrm{OV}}-1}{\mathrm{R}+\mathrm{k}_{\mathrm{OV}}-1} \end{aligned}$
$\begin{aligned} & \Delta X_{\text {STRING }}=R \frac{F}{S P-F S} \\ & \Delta X_{\text {STRING }}=R \frac{k_{0 V}-1}{S-k_{0 V}} \end{aligned}$	$\begin{gathered} \Delta \mathrm{X}_{\text {STRING }}=-\frac{\mathrm{R}}{\mathrm{~S}} \mathrm{~F} \\ \Delta \mathrm{X}_{\text {STRING }}=-\mathrm{R} \frac{\mathrm{k}_{\mathrm{OV}}-1}{\mathrm{k}_{\mathrm{OV}}} \end{gathered}$
$\begin{gathered} \Delta \mathrm{V}_{87}=\frac{\mathrm{TF}}{\mathrm{SRP}-\mathrm{F}\left(\mathrm{SR}-\frac{\mathrm{R}-\mathrm{T}}{1-\mathrm{T}}\right)} 1 \angle 0^{\circ} \\ \Delta \mathrm{V}_{87}=\frac{\mathrm{T}(1-\mathrm{T})\left(\mathrm{k}_{\mathrm{OV}}-1\right)}{\mathrm{R}(\mathrm{~S}-1)-\mathrm{T}\left(\mathrm{SR}-(\mathrm{R}-1) \mathrm{k}_{\mathrm{OV}}-1\right)} 1 \angle 0^{\circ} \end{gathered}$	$\begin{gathered} \Delta \mathrm{V}_{87}=\frac{\mathrm{TF}}{\mathrm{SR}-\mathrm{F} \frac{\mathrm{R}-\mathrm{T}}{1-\mathrm{T}}} 1 \angle 180^{\circ} \\ \Delta \mathrm{V}_{87}=\frac{\mathrm{T}(1-\mathrm{T})\left(\mathrm{k}_{\mathrm{OV}}-1\right)}{\mathrm{R}-\mathrm{T}\left((\mathrm{R}-1) \mathrm{k}_{\mathrm{oV}}+1\right)} 1 \angle 180^{\circ} \end{gathered}$

Notes:

All values are in per unit.
$\Delta \mathrm{X}_{\text {PHASE }}$ and $\Delta \mathrm{X}_{\text {STRING }}$ are both in per unit of the bank reactance.
Voltage and current phase angles are relative to the faulted-phase voltage.
$\Delta 87 \mathrm{~V}$ differential signal uses bus voltage scaled down to the tap voltage $\left(\mathrm{V}_{\mathrm{TAP}}-\mathrm{T} \cdot \mathrm{V}_{\text {BUS }}\right)$.
$\mathrm{T}=\frac{\mathrm{X}_{\text {BOTTOM }}}{\mathrm{X}_{\text {TOP }}+\mathrm{X}_{\text {BOTTOM }}}$
For nonhomogeneous banks (different unit arrangement above and below the tap), P and R are parameters of the top part and S is an equivalent value, as follows:
$\mathrm{S}=\frac{\mathrm{S}_{\mathrm{TOP}}}{1-\mathrm{T}}$

Unbalance derivations $\mathrm{V}_{59 \mathrm{~N}}$ in an ungrounded single-wye bank

$$
\begin{gathered}
I_{A}+I_{B}+I_{C}=0 \\
\frac{V_{A}-V_{59 N}}{-j X_{F}}+\frac{V_{B}-V_{59 N}}{-j X}+\frac{V_{C}-V_{59 N}}{-j X}=0 \\
V_{B}=a^{2} \cdot V_{A}, \quad V_{C}=a \cdot V_{A}, \quad a=1 \angle 120^{\circ} \\
V_{59 N} \cdot\left(\frac{1}{X_{F}}+\frac{2}{X}\right)=V_{A} \cdot\left(\frac{1}{X_{F}}+\frac{a^{2}+a}{X}\right) \\
V_{59 N} \cdot\left(\frac{X+2 \cdot X_{F}}{X \cdot X_{F}}\right)=V_{A} \cdot\left(\frac{X-X_{F}}{X \cdot X_{F}}\right) \\
V_{59 N}=V_{A} \cdot\left(\frac{X-X_{F}}{X+2 \cdot X_{F}}\right)
\end{gathered}
$$

Unbalance derivations $\mathrm{V}_{59 \mathrm{~N}}$ in an ungrounded single-wye bank

$$
\begin{gathered}
V_{59 N}=V_{A} \cdot\left(\frac{X-X_{F}}{X+2 \cdot X_{F}}\right) \\
X=\frac{X_{U}}{P} \cdot S \cdot \frac{1}{R}
\end{gathered}
$$

$$
\left(X_{F}\right)^{-1}=\left(\frac{X_{U}}{P-F}+\frac{X_{U}}{P} \cdot(S-1)\right)^{-1}+\left(\frac{X_{U}}{P} \cdot S \cdot \frac{1}{R-1}\right)^{-1}
$$

$$
\mathrm{V}_{59 \mathrm{~N}(\mathrm{PU})}=\frac{\mathrm{F}}{3 \cdot \mathrm{~S} \cdot \mathrm{P} \cdot \mathrm{R}-\mathrm{F} \cdot(3 \cdot \mathrm{~S} \cdot \mathrm{R}-3 \cdot \mathrm{R}+1)} \cdot 1 \angle 180^{\circ}
$$

Unbalance derivations Methodology

Unbalance derivations Validation

- Inspect for expected results
- Inspect for symmetry with other equations
- Run RTDS simulations for all bank configurations by using different bank parameters
- Compare with known examples (e.g., C37.99, past projects)

Key output of this work

- Appendix A
- One page for each bank configuration
- Fail-open and fail-short columns
- Self-contained reference material

Ungrounded Double-Wye capactior Bank

Fail-Open	Fail-Short
$\begin{aligned} \mathrm{k}_{\mathrm{ov}} & =\frac{6 \mathrm{SPR}}{6 \mathrm{SPR}-\mathrm{F}(6 \mathrm{SR}-6 \mathrm{R}+1)} \\ \mathrm{F} & =\frac{6 \mathrm{SPR}}{6 \mathrm{SR}-6 \mathrm{R}+1} \frac{\mathrm{k}_{\mathrm{ov}}-1}{\mathrm{k}_{\mathrm{ov}}} \end{aligned}$	$\begin{aligned} \mathrm{k}_{\mathrm{ov}} & =\frac{6 \mathrm{SR}}{6 \mathrm{SR}-\mathrm{F}(6 \mathrm{R}-1)} \\ \mathrm{F} & =\frac{6 \mathrm{SR}}{6 R-1} \frac{k_{\mathrm{ov}}-1}{\mathrm{k}_{\mathrm{ov}}} \end{aligned}$
$\begin{gathered} 3 \mathrm{I}_{2}=\frac{3 \mathrm{~F}}{6 \mathrm{SPR}-\mathrm{F}(6 \mathrm{SR}-6 \mathrm{R}+1)} 1 \angle-90^{\circ} \\ 3 \mathrm{I}_{2}=3 \frac{\mathrm{k}_{\mathrm{Ov}}-1}{6 \mathrm{R}(\mathrm{~S}-1)+1} 1 \angle-90^{\circ} \end{gathered}$	$\begin{gathered} 3 \mathrm{I}_{2}=\frac{3 \mathrm{~F}}{6 \mathrm{SR}-\mathrm{F}(6 \mathrm{R}-1)} 1 \angle 90^{\circ} \\ 3 \mathrm{I}_{2}=3 \frac{\mathrm{k}_{\mathrm{ov}}-1}{6 \mathrm{R}-1} 1 \angle 90^{\circ} \end{gathered}$
$\begin{gathered} \mathrm{V}_{59 \mathrm{~N}}=\frac{\mathrm{F}}{6 \mathrm{SPR}-\mathrm{F}(6 \mathrm{SR}-6 \mathrm{R}+1)} 1 \angle 180^{\circ} \\ \mathrm{V}_{59 \mathrm{~N}}=\frac{\mathrm{k}_{\mathrm{OV}}-1}{6 \mathrm{R}(\mathrm{~S}-1)+1} 1 \angle 180^{\circ} \end{gathered}$	$\begin{gathered} V_{59 \mathrm{~N}}=\frac{\mathrm{F}}{6 \mathrm{SR}-\mathrm{F}(6 \mathrm{R}-1)} 1 \angle 0^{\circ} \\ \mathrm{V}_{59 \mathrm{~N}}=\frac{\mathrm{k}_{\mathrm{ov}}-1}{6 \mathrm{R}-1} 1 \angle 0^{\circ} \end{gathered}$
$\begin{gathered} \mathrm{V}_{87}=\frac{6 \mathrm{TF}}{6 \mathrm{SRP}-\mathrm{F}\left(6 \mathrm{SR}-\frac{6 \mathrm{R}-5 \mathrm{~T}-1}{1-\mathrm{T}}\right)} 1 \angle 0^{\circ} \\ \mathrm{V}_{87}=\frac{6 \mathrm{~T}(1-\mathrm{T})\left(\mathrm{k}_{\mathrm{ov}}-1\right)}{6 \mathrm{R}(\mathrm{~S}-1)-\mathrm{T}\left(6 \mathrm{SR}-6(\mathrm{R}-1) \mathrm{k}_{\mathrm{ov}}-5\right)+1} 1 \angle 0^{\circ} \end{gathered}$	$\begin{gathered} \mathrm{V}_{87}=\frac{6 \mathrm{TF}}{6 \mathrm{SR}-\mathrm{F} \frac{6 \mathrm{R}-5 \mathrm{~T}-1}{1-\mathrm{T}}} 1 \angle 180^{\circ} \\ \mathrm{V}_{87}=\frac{6 \mathrm{~T}(1-\mathrm{T})\left(\mathrm{k}_{\mathrm{ov}}-1\right)}{6 \mathrm{R}-\mathrm{T}\left(6(\mathrm{R}-1) \mathrm{k}_{\mathrm{ov}}+5\right)-1} 1 \angle 180^{\circ} \end{gathered}$

$$
\begin{gathered}
\mathrm{I}_{60 \mathrm{P}}=2 \mathrm{I}_{60 \mathrm{~N}}=3 \mathrm{I}_{2} \\
\mathrm{I}_{60 \mathrm{~N}}=\frac{1}{2} 3 \mathrm{I}_{2} \\
V_{59 \mathrm{~N}}=-j \frac{1}{3} 3 \mathrm{I}_{2}
\end{gathered}
$$

Notes:
All values are in per unit
Voltage and current phase angles are relative to the faulted-phase voltage.
$\mathrm{T}=\frac{\mathrm{X}_{\text {BOTTOM }}}{\mathrm{X}_{\text {TOP }}+\mathrm{X}_{\text {BOTTO }}}$
For nonhomogeneous banks (different unit arrangement
For nonhomogeneous banks (different unit arrangement
above and below the tap), P and R are parameters of the above and below the tap), P and R are parameters
top part and S is an equivalent value, as follows:
$S=\frac{S_{\text {TOP }}}{1-T}$

Introducing overvoltage factor

$$
\mathrm{k}_{\mathrm{ov}}=\frac{\text { Voltage across the most stressed healthy unit due to a failure }}{\text { Unit voltage during nominal system conditions }}
$$

- In the paper, we have
- Derived k_{ov} as a function of failure size for all bank configurations and the fail-open and fail-short failure modes
- Expressed each unbalance signal as a function of $k_{o v}$
- You can calculate the highest permissible k_{Ov} and use it to calculate trip thresholds

$$
\mathrm{k}_{\mathrm{OV}}=1.1 \cdot \frac{\mathrm{~V}_{\mathrm{U}}}{\left(\frac{\mathrm{~V}_{\mathrm{NOM}}}{\sqrt{3} \cdot \mathrm{~S}}\right)}=1.1 \cdot \frac{\mathrm{~S} \cdot \mathrm{~V}_{\mathrm{U}}}{\mathrm{~V}_{\mathrm{BASE}}}
$$

Setting trip thresholds Ungrounded single-wye bank, fail-open example

$$
\begin{aligned}
\mathrm{k}_{\mathrm{OV}} & =\frac{3 \mathrm{SPR}}{3 \mathrm{SPR}-\mathrm{F}(3 \mathrm{SR}-3 \mathrm{R}+1)} \\
\mathrm{F} & =\frac{3 \mathrm{SPR}}{3 \mathrm{SR}-3 \mathrm{R}+1} \cdot \frac{\mathrm{k}_{\mathrm{OV}}-1}{\mathrm{k}_{\mathrm{OV}}}
\end{aligned}
$$

$$
V_{59 N}=\frac{F}{3 S P R-F(3 S R-3 R+1)}
$$

$$
\mathrm{V}_{59 \mathrm{~N}}=\frac{\mathrm{k}_{\mathrm{OV}}-1}{3 \mathrm{R}(\mathrm{~S}-1)+1}
$$

Key output of this work

- Appendix A
- One page for each bank configuration
- Fail-open and fail-short columns
- Self-contained reference material

Ungrounded Double-Wye capactior Bank

Fail-Open	Fail-Short
$\begin{aligned} \mathrm{k}_{\mathrm{ov}} & =\frac{6 \mathrm{SPR}}{6 \mathrm{SPR}-\mathrm{F}(6 \mathrm{SR}-6 \mathrm{R}+1)} \\ \mathrm{F} & =\frac{6 \mathrm{SPR}}{6 \mathrm{SR}-6 \mathrm{R}+1} \frac{\mathrm{k}_{\mathrm{ov}}-1}{\mathrm{k}_{\mathrm{ov}}} \end{aligned}$	$\begin{aligned} \mathrm{k}_{\mathrm{ov}} & =\frac{6 \mathrm{SR}}{6 \mathrm{SR}-\mathrm{F}(6 \mathrm{R}-1)} \\ \mathrm{F} & =\frac{6 \mathrm{SR}}{6 R-1} \frac{k_{\mathrm{ov}}-1}{\mathrm{k}_{\mathrm{ov}}} \end{aligned}$
$\begin{gathered} 3 \mathrm{I}_{2}=\frac{3 \mathrm{~F}}{6 \mathrm{SPR}-\mathrm{F}(6 \mathrm{SR}-6 \mathrm{R}+1)} 1 \angle-90^{\circ} \\ 3 \mathrm{I}_{2}=3 \frac{\mathrm{k}_{\mathrm{Ov}}-1}{6 \mathrm{R}(\mathrm{~S}-1)+1} 1 \angle-90^{\circ} \end{gathered}$	$\begin{gathered} 3 \mathrm{I}_{2}=\frac{3 \mathrm{~F}}{6 \mathrm{SR}-\mathrm{F}(6 \mathrm{R}-1)} 1 \angle 90^{\circ} \\ 3 \mathrm{I}_{2}=3 \frac{\mathrm{k}_{\mathrm{ov}}-1}{6 \mathrm{R}-1} 1 \angle 90^{\circ} \end{gathered}$
$\begin{gathered} \mathrm{V}_{59 \mathrm{~N}}=\frac{\mathrm{F}}{6 \mathrm{SPR}-\mathrm{F}(6 \mathrm{SR}-6 \mathrm{R}+1)} 1 \angle 180^{\circ} \\ \mathrm{V}_{59 \mathrm{~N}}=\frac{\mathrm{k}_{\mathrm{OV}}-1}{6 \mathrm{R}(\mathrm{~S}-1)+1} 1 \angle 180^{\circ} \end{gathered}$	$\begin{gathered} V_{59 \mathrm{~N}}=\frac{\mathrm{F}}{6 \mathrm{SR}-\mathrm{F}(6 \mathrm{R}-1)} 1 \angle 0^{\circ} \\ \mathrm{V}_{59 \mathrm{~N}}=\frac{\mathrm{k}_{\mathrm{ov}}-1}{6 \mathrm{R}-1} 1 \angle 0^{\circ} \end{gathered}$
$\begin{gathered} \mathrm{V}_{87}=\frac{6 \mathrm{TF}}{6 \mathrm{SRP}-\mathrm{F}\left(6 \mathrm{SR}-\frac{6 \mathrm{R}-5 \mathrm{~T}-1}{1-\mathrm{T}}\right)} 1 \angle 0^{\circ} \\ \mathrm{V}_{87}=\frac{6 \mathrm{~T}(1-\mathrm{T})\left(\mathrm{k}_{\mathrm{ov}}-1\right)}{6 \mathrm{R}(\mathrm{~S}-1)-\mathrm{T}\left(6 \mathrm{SR}-6(\mathrm{R}-1) \mathrm{k}_{\mathrm{ov}}-5\right)+1} 1 \angle 0^{\circ} \end{gathered}$	$\begin{gathered} \mathrm{V}_{87}=\frac{6 \mathrm{TF}}{6 \mathrm{SR}-\mathrm{F} \frac{6 \mathrm{R}-5 \mathrm{~T}-1}{1-\mathrm{T}}} 1 \angle 180^{\circ} \\ \mathrm{V}_{87}=\frac{6 \mathrm{~T}(1-\mathrm{T})\left(\mathrm{k}_{\mathrm{ov}}-1\right)}{6 \mathrm{R}-\mathrm{T}\left(6(\mathrm{R}-1) \mathrm{k}_{\mathrm{ov}}+5\right)-1} 1 \angle 180^{\circ} \end{gathered}$

$$
\begin{gathered}
\mathrm{I}_{60 \mathrm{P}}=2 \mathrm{I}_{60 \mathrm{~N}}=3 \mathrm{I}_{2} \\
\mathrm{I}_{60 \mathrm{~N}}=\frac{1}{2} 3 \mathrm{I}_{2} \\
V_{59 \mathrm{~N}}=-j \frac{1}{3} 3 \mathrm{I}_{2}
\end{gathered}
$$

Notes:
All values are in per unit
Voltage and current phase angles are relative to the faulted-phase voltage.
$\mathrm{T}=\frac{\mathrm{X}_{\text {BOTTOM }}}{\mathrm{X}_{\text {TOP }}+\mathrm{X}_{\text {BOTTO }}}$
For nonhomogeneous banks (different unit arrangement
For nonhomogeneous banks (different unit arrangement
above and below the tap), P and R are parameters of the above and below the tap), P and R are parameters
top part and S is an equivalent value, as follows:
$S=\frac{S_{\text {TOP }}}{1-T}$

Grounded double-wye bank example Basic data

PARAMETER	VALUE
Voltage (kV LL)	138
Bus Voltage PTR	$1200: 1$
Bank Nominal Power (MVAr)	100
Breaker CTR	$2000: 5$
Units in a Group, P	15
Groups in a String, S	6
Strings in a Phase, R	1
Unit Voltage Rating, kV	13.8
Unit Type	Externally fused
87V Tap	One bottom group
87V Tap PTR	$120: 1$
60N CTR	$20: 5$

Grounded double-wye bank example Supporting variables
 Highest permissible overvoltage factor

PARAMETER	VALUE
Voltage (kV LL)	138
Bus Voltage PTR	$1200: 1$
Bank Nominal Power (MVAr)	100
Breaker CTR	$2000: 5$
Units in a Group, P	15
Groups in a String, S	6
Strings in a Phase, R	1
Unit Voltage Rating, kV	13.8
Unit Type	Externally fused
87V Tap	One bottom group
87V Tap PTR	$\mathbf{1 2 0 : 1}$
60N CTR	$20: 5$

$$
\mathrm{k}_{\mathrm{OV}}=1.1 \cdot \frac{13.8}{\left(\frac{138}{\sqrt{3} \cdot 6}\right)}=1.143
$$

Tap position

$$
\mathrm{T}=\frac{1}{6}=0.1667
$$

Base voltage, current, and impedance

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{BASE}}=\frac{138 \mathrm{kV}}{\sqrt{3}}=79.674 \mathrm{kV} \\
& \mathrm{I}_{\mathrm{BASE}}=\frac{100 \mathrm{MVAr}}{\sqrt{3} \cdot 138 \mathrm{kV}}=418.37 \mathrm{~A} \\
& \mathrm{Z}_{\mathrm{BASE}}=\frac{79.674 \mathrm{kV}}{418.37 \mathrm{~A}}=190.44 \Omega
\end{aligned}
$$

Grounded double-wye bank example Alarm thresholds (single unit failure)

PARAMETER	VALUE
Voltage (kV LL)	138
Bus Voltage PTR	$1200: 1$
Bank Nominal Power (MVAr)	100
Breaker CTR	$2000: 5$
Units in a Group, P	15
Groups in a String, S	6
Strings in a Phase, R	1
Unit Voltage Rating, kV	13.8
Unit Type	Externally fused
87V Tap	One bottom group
87V Tap PTR	$120: 1$
60N CTR	$20: 5$

$$
\begin{aligned}
& 3 \mathrm{I}_{2}=\mathrm{I}_{60 \mathrm{~N}}=\frac{1}{2} \frac{\mathrm{~F}}{\mathrm{SPR}-\mathrm{F}(\mathrm{SR}-\mathrm{R})}=\cdots \\
& \ldots=\frac{1}{2} \cdot \frac{1}{6 \cdot 15 \cdot 1-1 \cdot(6 \cdot 1-1)}=\frac{1}{170}=\cdots \\
& \ldots=0.005882 \mathrm{pu} \\
& 3 \mathrm{I}_{2}=0.005882 \mathrm{pu} \cdot 418.37 \mathrm{~A} \cdot \frac{5}{2000}=0.0062 \mathrm{~A} \mathrm{sec} \\
& \mathrm{I}_{60 \mathrm{~N}}=0.005882 \mathrm{pu} \cdot 418.37 \mathrm{~A} \cdot \frac{5}{20}=0.6152 \mathrm{~A} \mathrm{sec}
\end{aligned}
$$

Grounded double-wye bank example Alarm thresholds (single unit failure)

PARAMETER	VALUE
Voltage (kV LL)	138
Bus Voltage PTR	$1200: 1$
Bank Nominal Power (MVAr)	100
Breaker CTR	$2000: 5$
Units in a Group, P	15
Groups in a String, S	6
Strings in a Phase, R	1
Unit Voltage Rating, kV	13.8
Unit Type	Externally fused
87V Tap	One bottom group
87V Tap PTR	$120: 1$
60N CTR	$20: 5$

$$
\begin{aligned}
& \mathrm{V}_{87}=\frac{\mathrm{TF}}{\mathrm{SRP}-\mathrm{F}\left(\mathrm{SR}-\frac{\mathrm{R}-\mathrm{T}}{1-\mathrm{T}}\right)}=\cdots \\
& \ldots=\frac{0.1667 \cdot 1}{6 \cdot 1 \cdot 15-1 \cdot\left(6 \cdot 1-\frac{1-0.1667}{1-0.1667}\right)}=\cdots \\
& \ldots=0.0019608 \mathrm{pu} \\
& \mathrm{~V}_{87}=0.0019608 \mathrm{pu} \cdot 79.674 \mathrm{kV} \cdot \frac{1}{120}=1.302 \mathrm{~V} \mathrm{sec}
\end{aligned}
$$

Grounded double-wye bank example Alarm thresholds (single unit failure)

PARAMETER	VALUE
Voltage (kV LL)	138
Bus Voltage PTR	$1200: 1$
Bank Nominal Power (MVAr)	100
Breaker CTR	$2000: 5$
Units in a Group, P	15
Groups in a String, S	6
Strings in a Phase, R	1
Unit Voltage Rating, kV	13.8
Unit Type	Externally fused
87V Tap	$120: 1$
87V Tap PTR	$20: 5$
60N CTR	

Grounded double-wye bank example Trip thresholds (breaching unit voltage rating)

PARAMETER	VALUE
Voltage (kV LL)	138
Bus Voltage PTR	$1200: 1$
Bank Nominal Power (MVAr)	100
Breaker CTR	$2000: 5$
Units in a Group, P	15
Groups in a String, S	6
Strings in a Phase, R	1
Unit Voltage Rating, kV	13.8
Unit Type	Externally fused
87V Tap	One bottom group
87V Tap PTR	$120: 1$
$60 N$ CTR	$20: 5$

$$
\begin{aligned}
& 3 \mathrm{I}_{2}=\mathrm{I}_{60 \mathrm{~N}}=\frac{\mathrm{k}_{\mathrm{OV}}-1}{2 \mathrm{R}(\mathrm{~S}-1)}=\frac{1.143-1}{2 \cdot 1 \cdot(6-1)}=0.0143 \mathrm{pu} \\
& 3 \mathrm{I}_{2}=0.0143 \mathrm{pu} \cdot 418.37 \mathrm{~A} \cdot \frac{5}{2000}=0.0150 \mathrm{~A} \mathrm{sec} \\
& \mathrm{I}_{60 \mathrm{~N}}=0.0143 \mathrm{pu} \cdot 418.37 \mathrm{~A} \cdot \frac{5}{20}=1.50 \mathrm{~A} \mathrm{sec}
\end{aligned}
$$

Grounded double-wye bank example Trip thresholds (breaching unit voltage rating)

PARAMETER	VALUE
Voltage (kV LL)	138
Bus Voltage PTR	$1200: 1$
Bank Nominal Power (MVAr)	100
Breaker CTR	$2000: 5$
Units in a Group, P	15
Groups in a String, S	6
Strings in a Phase, R	1
Unit Voltage Rating, kV	13.8
Unit Type	Externally fused
87V Tap	One bottom group
87V Tap PTR	$120: 1$
60N CTR	$20: 5$

Analysis and insights

- Some unbalance protection operating signals have identical or proportional values

Examples

- Any ungrounded bank

$$
V_{59 N}=-j \frac{1}{3} \cdot 3 \mathrm{I}_{2}
$$

- Double-wye grounded bank

$$
\mathrm{I}_{60 \mathrm{P}}=\mathrm{I}_{60 \mathrm{~N}}=3 \mathrm{I}_{2}
$$

- Double-wye ungrounded bank

$$
\mathrm{I}_{60 \mathrm{P}}=3 \mathrm{I}_{2}, \quad \mathrm{I}_{60 \mathrm{~N}}=\frac{1}{2} \cdot 3 \mathrm{I}_{2}
$$

Analysis and insights

- Some unbalance protection operating signals have identical or proportional values
- All unbalance protection operating signals are very similar in per-unit values

Example
Grounded single-wye bank, fail open:

$$
\begin{gathered}
\left|3 I_{2}\right|=\frac{F}{S \cdot R \cdot P-F \cdot(S \cdot R-R)} \\
|\Delta X|=\frac{F}{S \cdot R \cdot P-F \cdot(S \cdot R-R+1)} \\
|\Delta X| \cong\left|3 I_{2}\right|
\end{gathered}
$$

Analysis and insights

- Some unbalance protection operating signals have identical or proportional values
- All unbalance protection operating signals are very similar in per-unit values
- All unbalance equations have a common format

Example

$$
\left.\begin{array}{l}
\left\lvert\, \mathrm{V}_{59 \mathrm{~N}} \mathrm{I}=\frac{\mathrm{F}}{3 \cdot \mathrm{~S} \cdot \mathrm{P} \cdot \mathrm{R}-\mathrm{F} \cdot(3 \cdot \mathrm{~S} \cdot \mathrm{R}-3 \cdot \mathrm{R}+1)}\right. \\
\left|3 \mathrm{I}_{2}\right|=\frac{1}{2} \cdot \frac{\mathrm{~F}}{\mathrm{~S} \cdot \mathrm{R}-\mathrm{F} \cdot \mathrm{R}}
\end{array}\right\} \mathrm{Y}=\frac{\mathrm{k} \cdot \mathrm{~F}}{\mathrm{~A}-\mathrm{B} \cdot \mathrm{~F}}
$$

Analysis and insights

- Some unbalance protection operating signals have identical or proportional values
- All unbalance protection operating signals are very similar in per-unit values
- All unbalance equations have a common format
- Unbalance protection operating signals can be approximated as follows

$$
\mathrm{Y}_{(\mathrm{PU})} \approx \mathrm{k} \cdot \frac{\text { Number of Lost Units }}{\text { Number of Units per Phase }}
$$

Grounded double-wye bank example Alarm thresholds (single unit failure)

PARAMETER	VALUE
Voltage (kV LL)	138
Bus Voltage PTR	$1200: 1$
Bank Nominal Power (MVAr)	100
Breaker CTR	$2000: 5$
Units in a Group, P	15
Groups in a String, S	6
Strings in a Phase, R	1
Unit Voltage Rating, kV	13.8
Unit Type	Externally fused
87V Tap	One bottom group
87V Tap PTR	$120: 1$
60N CTR	$20: 5$

$$
\begin{aligned}
& 3 \mathrm{I}_{2}=\mathrm{I}_{60 \mathrm{~N}}=\frac{1}{2} \frac{\mathrm{~F}}{\mathrm{SPR}-\mathrm{F}(\mathrm{SR}-\mathrm{R})}=\cdots \\
& \ldots=\frac{1}{2} \cdot \frac{1}{6 \cdot 15 \cdot 1-1 \cdot(6 \cdot 1-1)}=\frac{1}{170}=0.0059 \mathrm{pu} \\
& \mathrm{Y}_{(\mathrm{PU})} \approx \frac{1}{6 \cdot 15 \cdot 2}=\frac{1}{180}=0.0056 \mathrm{pu}
\end{aligned}
$$

The approximation is accurate within 6 percent

Additional material in the paper

- Calculations for multiple capacitor unit failures
- Calculations for partial capacitor unit failures (capacitor element failures)
- Optimizing for more sensitive unbalance protection
- Unit arrangement
- Tap and bridge position
- Discussion on self-canceling failures and redundancy of unbalance protection

Conclusions
 Calculations and analysis

- Capacitor unbalance calculations can be done in one step (single-equation calculations)
- Simpler and faster
- Less prone to errors
- Calculating in per unit allows greater insights and helps spot errors
- Unbalance signals can be easily approximated based on the count of failed units
- Calculations for multiple failures can be done by using the superposition principle

Conclusions Protection

- The paper teaches simple one-step calculations for both alarm and trip thresholds
- Setting trip thresholds based on the overvoltage factor is an elegant solution
- In per unit, all unbalance protection elements have near-identical sensitivities
- Ease of measurement favors one element vs. others
- Using multiple elements protects against multiple self-canceling failures

