Point-to-Point Digital Secondary System Design for a Transmission Substation at Duke Energy: Challenges and Solutions

Stephen B. Ladd and Ethan Haithcox Duke Energy

Kelby Perren, Robert Koch, Kaitlin Slattery, Matthew Weaver, and Matthew Zahn University of North Carolina at Charlotte

Arun Shrestha, Sathish Kumar Mutha, and Luke Booth Schweitzer Engineering Laboratories, Inc.

Outline

- Case study overview
- Potential benefits of copper reduction
- Why P2P DSS approach?
- Transmission substation under study

- Comparative evaluations
 - Device count
 - Protection scheme unavailability
 - Protection system operation speed
- Lessons learned and future plans
- Conclusion
- P2P DSS design

Case study overview

- Evaluate P2P DSS to reduce amount of copper used in protection design
- Detail P2P DSS design for existing 100 kV transmission substation
- Compare evaluations between traditional and P2P DSS design
 - Device count
 - Protection scheme unavailability
 - Protection system operation speed

Current state use of fiber and copper

Fiber optics

- Control
- Alarming
- Communication schemes
- Limited in tripping applications where electrical isolation is required

Copper

Connection of instrument transformers to protective relays and metering devices

- CTs
- PTs

Example of full cable tray/trench

Potential benefits of copper reduction

- Physically large substations with substantial system fault duties introduce design challenges by requiring large current transformer cables installed over long distances
- Older substations requiring installation of new cables often meet challenge of full yard cable trays/trenches that require significant switchyard modifications above and beyond adding additional cable
- Potential cost savings lower substation construction costs, reduced construction time
- Reduction in number of CT secondaries within control house

Why P2P DSS approach?

- Obtain benefits from reducing copper usage
- Use fewer components (no network switches and clocks)
- Eliminate need for network engineering skills
- Minimize changes to existing settings templates and designs
- Simplify MU configuration and commissioning

Traditional line IED (primary)

Traditional bay controller IED (52-31)

Traditional line IED (secondary)

Traditional
secondary system↓↓↓↓↓Line 3

P2P DSS design

Bus differential configuration

Comparative evaluation

Device count

Traditional

P2P DSS design

Description	Units	Description	Units
Copper cables	73,342 ft	Fiber-optic cables	67,775 ft
Test switch	80	MU	69
Line differential IED	4	Line differential IED	4
Distance IED	24	Distance IED	24
Overcurrent IED	9	Overcurrent IED	9
Transformer IED	3	Transformer IED	3
Bus differential IED	12	Bus differential IED	12
Lockout IED	10		

*same as local IED

Protection scheme unavailability Overall unavailability (10⁻⁶)

Solution	Line 1 protection	Bus differential protection
Traditional	1,301.170	3,050.690
P2P-based solution	1,301.194	3,050.764

Protection system operation speed

87L element operation time

Protection system operation speed Round-trip time

Protection system operation speed

Solution	87 element		21 element	
	Trip time (ms)	Difference (ms)	Trip time (ms)	Difference (ms)
Traditional IED	15.427	NA	21.251	NA
P2P IED	16.261	0.834	21.965	0.714
P2P MU	16.316	0.889	22.025	0.774

Lessons learned

 With design requiring full redundancy in all protection, number of MUs and relays required was significant (52 IEDs and 69 MUs)

Design observation: would require larger substation battery

 No significant impact on protection unavailability: full redundancy requirement with P2P provided highly reliable design

- Limitations were noted with number of ports on MUs and relays when applied to substation layout/design used in this study
 - One set of bus potential transformers tied to many protective relays
 - Substation design had large number of breakers (and current transformers) per bus section

Future plans

Start with lab testing P2P technologies

Allow setting engineers opportunity to convert existing setting templates to what would be required for P2P technology

Introduce new technology to field resources

Determine testing requirements and how commissioning would occur in the actual substation

Future plans

- Key commissioning questions would need to be answered
 - How can current transformer connections to MUs be verified?
 - Will test blocks for injecting test currents at the MUs be required?
 - How will settings/configuration data on MUs be captured and stored in relay databases?
 - Will any additional security measures be required to secure physical access to MUs to ensure all compliance requirements are met?

Pre-deployment

Conclusion

- Limited number of ports on MU/relays pose unique challenge
 - Implementing bus differential protection for 10 breakers
 - Supplying bus voltages to 18 relays requires multiple MUs connected to same PT
- Little impact to protection reliability: protection scheme unavailability is very close between traditional and P2P DSS design
- Protection system operation speed of P2P DSS design is slightly slower than traditional design (around 1 ms)

Questions?