Line Current Differential Protection in Systems With Inverter-Based Resources – Challenges and Solutions

Ritwik Chowdhury, Ryan McDaniel, and Normann Fischer Schweitzer Engineering Laboratories, Inc.

Outline

- Element overview
- Challenges
- Solutions
- Application considerations
- Conclusion

87L requirements

Source of error	Security	Dependability
Channel asymmetry	Major	Moderate
CT saturation (during transients)	Major (can misoperate)	Minor (can delay tripping)
Line-charging current	Minor with compensation, otherwise can be moderate	Minor
Steady-state CT and relay errors	Minor	Minor
System nonhomogeneity	No effect	Moderate

Percentage-restrained (87PCT)

87AP → 87PCT settings conversion

External fault detector

Challenges

Internal AG fault 15-ohm

IBR fault response

Strong zero-sequence, but weak otherwise

No fault Harmonics

Solutions

Settings considering CT dimensions

Improved sensitivity and dependability

$$\mathbf{K}_{\text{TOT}} = \frac{\mathbf{V}_{\text{SAT}}}{\mathbf{I}_{\text{F}} \bullet \left(\mathbf{R}_{\text{CT}} + \mathbf{R}_{\text{B}}\right)}$$

 V_{SAT} = saturation voltage of CT K_{TOT} = total dimensioning factor I_F = fault current (amperes, sec) R_{CT} = CT winding resistance R_B = burden resistance

87LQ element security

$$87LQP_{SENS} = 1.25 \cdot \frac{S_{IBR}}{\sqrt{3} \cdot V_{HV} \cdot (CTR \cdot I_{NOM})} pu$$

 $87LQP_{SECURE} = 1.30 \cdot 87LQP_{SENS}$ pu

Improved settings guidelines

Sensitive 87L Settings Guidelines

Setting	87LP	87LG	87LQ	
Pickup	0.30 pu	0.20 pu	1.25 pu ^c	
Radius	1.35	1.35	1.35	
Angle	90 degrees ^A	90 degrees ^A	90 degrees ^A	
Secure 87L Settings Guidelines				
	Secure or L Sec	ings Guidennes		
Setting	87LP	87LG	87LG	
Setting Pickup	87LP 0.75 pu	87LG 0.30 pu	87LG 1.63 pu ^C	
Setting Pickup Radius	87LP 0.75 pu 5.00 ^B	87LG 0.30 pu 5.00 ^B	87LG 1.63 pu ^C 5.00 ^B	

^A Adjust based on worst-case channel asymmetry

^B Adjust based on CT sizing guidelines

^c Adjust based on IBR rating and system parameters

Improved settings guidelines

Solutions evaluation

Internal AG fault

Improved settings

No fault Improved settings

- 87LQP_{SENS} = 0.48 pu
- 87LQP_{SECURE} = 0.63 pu [§]

Example IBR system

Tie-line connecting to three-ring breaker bus

87AP vs. 87PCT sensitivity

Considering maximum 3.5 ms asymmetry

Fault location (% of line length)

87AP vs. 87PCT sensitivity

Depends on maximum channel asymmetry

New and general settings guidelines

- IBR applications, including with high penetration
- Series-compensated lines, including with current inversion
- Single-phase tripping applications
- Evolving external-to-internal faults
- Increases sensitivity, without a loss of security, for all applications!

Conclusion

- 87L is excellent for IBR applications
- Dependability challenge for internal ground faults
- Security challenge to 87LQ because of harmonics
- New settings improve dependability and security
- Strong new default settings guidelines
- Solutions can be extended to all applications

Questions?