

March 2023

Inverter-Based Generation Integration Protection Challenges: Real-life Experiences

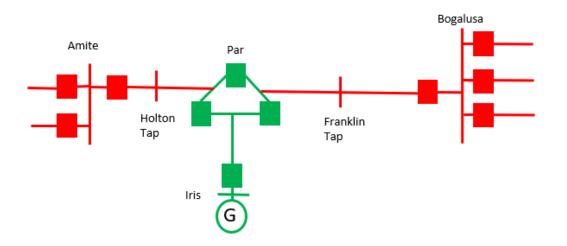
Monir Hossain, Ph.D., mhoss93@entergy.com Sean Boyer, sboyer@entergy.com Scott Brown, sbrow16@entergy.com Tu Nguyen, tnguyen@entergy.com

Outline

A. Introduction

- B. Project Summary
- C. Relay Impact Study
 - a. Modeling
 - b. Findings
 - c. Relay Scope Identification
- D. Implementation
 - a. Solutions
 - b. Testing
- E. Conclusions

Introduction

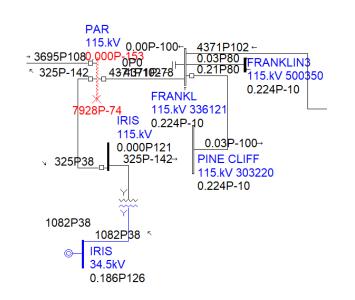

- IBRs in Electric Grid

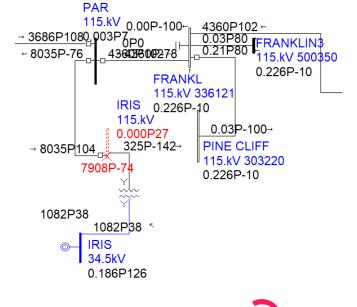
 Impacts on Environment
 Engineering Challenges
 - Non-rotating Irresponsive to Faults
 - Traditional Protection Schemes

Project Summary

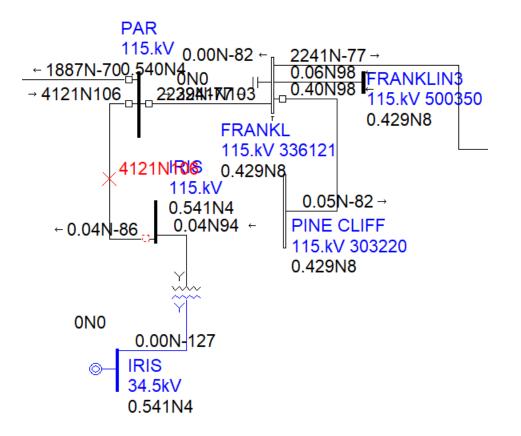
- 50 MW at Iris
- Interconnect on Amite to Bogalusa Line
- 3 Breaker Ring Configuration of POI

Relay Impact Study: Modeling


Solar Generator (Voltage Controlled Current Source)					
Enter kV	34.5				
Enter MVA	58.8				
Calculated Load Current (IL)	984.0345		IL = (S/(1.732*kV))*1000		
	l (pu)	V (pu)	I (A)	PF	
	1	1	984.0345	0	
	1.02	0.9	1003.715	-11.31	
	1.1	0.7	1082.438	-33.06	
	1.1	0.5	1082.438	-65.38	
	1.1	0.3	1082.438	-65.38	
	1.1	0.1	1082.438	-90	



- Short Transmission Line
 - Length: 1000 Ft
 - High SIR
 - Classical Protection Schemes Ineffective (Overreaching Risks of instantaneous step-distance element)


- Weak Feed From Solar
 - o Max Load 984 A
 - Low Fault Current Contribution
 - o CT Selection Dilemma:
 - Low Relay Current for Transmission Side Faults (Required to tap the CT)
 - High Relay Current for IBR Side Faults (CT saturation risks for tapping CT)

- Lack of Negative Sequence Current
 - Traditional IBRs only produce positive sequence current
 - Distance Protection Directionality Challenges

- Network Sparsity Issues
 - Weak Infeed and Lack of Negative Sequence Issues Spread in the Existing Systems
 - Protection Upgrade for All Adjacent Radial Lines (n-1 contingency condition)

Implementation: Solutions

• Par to Iris Solar Line:

- o Dual Line Differential with redundant channel
- Time Delayed Step Distance From Par to Iris Solar (Backup) Direction
- Polarizing Quantity: V
- Customized Scheme to Enable Backup Step Distance
- No Step Distance at Iris Solar
- Iris Backup Protection: DTT from Par

Implementation: Solutions

- All Adjacent Lines in Contingency Condition (Par-Amite & Par-Bogalusa)
 - Dual Line Differential with redundant channel
 - Time Delayed POTT
 - Time Delayed Step Distance (Backup)
 - Polarizing Quantity: V
 - Customized Scheme to Enable Backup Step Distance

Implementation: Testing

- Single-ended Element Test:
 - I. Calculated V/I simulated in Power System Simulator.
 - II. Ensure individual protection function and alarm pickup.

End-to-End Test

- I. V/I from fault analysis software simulated in Power System Simulator.
- II. Ensure comm. channel integrity.
- III. Ensure POTT coordination, and differential functionality.

Conclusions

- Opportunity to explore protection challenges.
- The implemented solution performed as intended during

hurricane IDA and other events since 2020.

• Paving the way to future standards.

Questions???

