Detecting and Isolating Falling Conductors in Midair – First Field Implementation Using Private LTE at Protection Speeds

Charlie Cerezo and Caleb Murphy San Diego Gas & Electric Company

Tanushri Doshi, Rohit Sharma, and Jay Lopes Schweitzer Engineering Laboratories, Inc.

SDG&E distribution network

- Approximately 6,500 miles of overhead distribution line infrastructure
- Grounded three- and four-wire systems
- Nominally 12 kV and 4 kV
- High penetration of distribution photovoltaic (PV) requires new solutions for monitoring, protection, and control

Falling Conductor Protection (FCP)

FCP: Design elements

- IEDs:
 - IEEE C37.118
 - IEC 61850
 GOOSE protocol
- Real-time automation controller (RTAC)

*Devices have satellite-synchronized clock

- Communications network
 - High speed and low latency
 - Ethernet radio, fibers, and private Long-Term Evolution (PLTE)
- Time synchronized with high-accuracy clock

FCP: System architecture

- Substation devices
- Field devices
- Zone assignment
- Communications network

FCP: Detection methods and FCP trip

- Detection methods
- User-settable voting scheme to issue FCP trips

Detection method: dV / dt

Detection method: V2Mag and V0Mag

Detection method: V2Ang and V0Ang

Enhancements

- RTAC library package
- Zone topology and zone expansion
- Falling conductor (FC) location identification
- Blown fuse detection
- Faulty voltage sensor detection
- Traditional system faults
- External disturbance

Hardware-in-the-loop testing

- Multiple FC test locations
- Maintenance test
- Contingency test
 - Blown fuse
 - System faults
 - External disturbance
 - Device failure
- Automated batch test to calculate average trip time

SDG&E FCP program status

- In planning: 22-substation upgrade
- In 2022
 - 6 circuits successfully commissioned
 - All in monitoring mode
- In 2023
 - 5 circuits planned to commission
 - 2022 circuits placed in service mode tripping mode

Challenges and opportunities

- Project integration with 28 cross-function groups – multiple internal and contract stakeholders
- Long lead time for components
- Evolving requirements and priorities

Challenges and opportunities

- Local, state, and federal regulatory compliance
 - Cleveland National Forest
 - Bureau of Indian Affairs
 - California Public Utilities Commission (CPUC) / Wildfire Mitigation Plan (WMP) account tracking
- Applicable to radial circuits
- Future development for non-radial circuits
- Extend to single-phase and two-phase laterals

Traditional FCP communications network solutions

PLTE solution

FCP communications network solution comparison

	Point-to-Point (2P) / Point-to- Multipoint (PMP)	Mesh	Worldwide Interoperability for Microwave Access (WiMAX)	PLTE
Standards-based, non-proprietary	\bigcirc	\bigcirc		
Wireless protection, redundancy, and failover	\bigcirc	\bigcirc		
Integrated quality of service (QoS)	\bigcirc			
Centralized traffic inspection	\bigcirc	\bigcirc	\bigcirc	
Endpoint construction and operations efficiency	\bigcirc	\bigcirc	\bigcirc	
Fully com	plies Partially complie	s 🔵 Do	es not comply	

Field implementation: Site readiness

- FCP settings check
- PLTE network check
- Communications network check
- Web Application Security Assessment (WASA) and SCADA P2P check
- Switch plan check

Field implementation: Circuit

*PMU 1 and PMU 7 are single-unit PMUs monitoring and controlling multiple breakers / switches

Field implementation: FC at Location 1

Field implementation: Zone expansion at Location 10

- Secure during maintenance on circuit
- FCP disabled on PMU 13 to simulate out-ofservice of PMU

Conclusion

- FCP detects and de-energizes falling conductor before it hits the ground
- FCP is a wide-area protection scheme (WAPS), which compliments existing protection scheme
- Successfully validates field results
- FCP is flexible to maintenance on circuit
- FCP is secure against conventional short-circuit fault event

Conclusion

- Communications network must be reliable and strong for FCP
- PLTE network provides greater overall value than traditional network solution
- PLTE is more reliable and efficient
- PLTE is standards-based and non-proprietary
- PLTE also hardens network cybersecurity

Questions?