Process Improvement of Distribution Protective Relays Coordination
Introduction

- Power system studies are more demanding today
 - Distributed Energy Resources (DERs) pose new challenges
 - Customer demand and load profile is rapidly changing (e.g., electric vehicles, energy storage)
 - Regulatory requirements become more strict
 - Less predictable due to climate change

- A protection department runs hundreds of studies each year
 - Triggered by system changes, unexpected operations, or preventive measures
 - Each study takes several minutes to hours, even a day or two
 - Most of time spent to prepare study rather than evaluation

- Focus of this presentation
 - Improving this process, specifically for distribution protection studies
 - Resolving data quality challenges, right use of software tools and automation, and documentation
 - Taking steps towards autonomous power systems
Distribution protection study process
- Data gathering (model, settings, etc.)
- Modeling (primary system, protection)
- Running studies (short-circuit, etc.)
- Reviewing results
- Reporting
- Repeat!

Examples
- Damage-curve and arc-flash
- Substation relays coordination
- Relays pickup settings comparison with load

These tasks are typically performed manually as separate processes.
Data Integrity for Power Systems Studies

- **Data Availability**
 - Multiple data types needed
 - Different departments own data sources
 - “Data lake” collects all data in one location, for more availability and security

- **Digitization**
 - Convert all records to digital formats
 - Paper records are often inconsistent
 - Digital conversion is not loss-less
 - Automated and manual quality control needed
Data Integrity for Power Systems Studies

- **Quality Assurance**
 - Ensure data quality is acceptable, examples:
 - Accurate connectivity for short-circuit model
 - Updated source impedance model based on transmission network
 - Latest settings are same as the field
 - Large effort right after data conversion
 - Ongoing process: identify, report, and fix

- **Standardization**
 - Helps linking data points, example:
 - Consider system model and settings are available, naming convention helps to place protection
 - Goal is one standard across utility
 - Short-term solution is translation tables
Study Processes, Software Tools, and Automation

Process Optimization
• Accommodate new data sources
• Account for system changes (DER, VVO, etc.)
• Align with software updates

Software Tools
• Many tools used
 Short-circuit analysis, relay software, protection curves, reporting
• Use tools efficiently
 – Review tool functionalities
 – Use interfaces and automation capabilities to transfer data
 – One main tool others as resources

Use of Automation
• Common in transmission studies
• Data availability and quality is a challenge in distribution system
 – Large number of assets
 – Fast system changes
 – Expensive to enhance data quality
• Off-the-shelf solutions don’t exist
 – Due to combination of data sources and process variation
Steps Toward Efficient Systems Studies

- Data integrity

- Process Development
 - Build automation team with diverse skillsets
 - Review current processes, record planned changes, and predict future needs
 - Examine available tools and evaluate potential for improvement
 - Prepare documentation
 - Standards, guidelines, and general practices
 - One-time effort that goes a long way
 - More required today with agile workforce habits

- Automation
 - Gradual integration of automation into processes
Current Processes for System Studies

- User interacts with multiple data sources:
 - Model Database (network model, equipment sizes, etc.)
 - Measurements Database (historical load and fault data)
 - Relay Settings Database

- And multiple tools
 - Short-circuit studies
 - Protection modeling (curves, current/time calculations)
 - Reporting

- One or more steps automated at each example
Implementation Examples
Automation-Assisted Damage-Curve and Arc-Flash Studies

- Automatic parsing and extraction of protective relay settings
- Creating a library of damage curves and protective relay curves
- Automatic drawing of protective device curves and comparing them
- Automatic importing of fault-duties from the short-circuit program
- Automatic parsing and extraction of protective relay settings
- Automatic drawing of protective device curves and comparing them
- Automatic analysis of historical load value, filtering bad data, and estimating load growth

* Not enough margin

✓ Flag ignored in “Switch Mode”
- All functions for damage-curve and arc-flash module
- Automatic detection of substation configuration
- Automatic testing of all contingencies
- Generic study to fall back on if substation configuration is not available
Conclusions

- Data integrity is essential before improving a study process
 - Availability, digitization, standardization, quality assurance

- Process development
 - Build automation team, review existing processes, study available software tools, prepare documentation
 - Efficient use of tools, better use of data sources, and detailed written processes helps
 - Consider new technologies and future needs (DER, energy storage, VVO, electrification, etc.)
 - Think out of the box: implement all scenarios for studies, not only the ones that was possible manually

- Implementation
 - Start with simple steps
 - Such as data transfer and calculations
 - Add/improve at each step
 - Use additional data sources to improve quality
 - Implement fail safe measures for non-essential data sources
Summary and Future Work

- Practical approach to improve a distribution protection study process

- Prerequisites are
 - Data integrity
 - Process development including documentation

- Three examples provided of implemented techniques

- Steps towards adaptive protection systems
Thank you!