Improving Protection Applications for Modern Industrial Switchgear Systems

Benton Vandiver III, ABB ES
March 23, 2021
Overview

Introduction
Challenge
Conventional P&C
Communication-based P&C
Integrated Multi-Object P&C
Conclusions
Introduction

- MV Switchgear both conventional and GIS are in high demand
- Switchgear are used in all distribution applications and configurations across all industries, utilities, commercial facilities, campuses, municipalities, etc.
- PAC systems applied to MV switchgear have remained philosophically unchanged
- New technology and trends have opened new possibilities:
 - MV switchgear has evolved more compact and modular
 - Non Conventional Instrument Transformer’s have introduced new capabilities
 - Data & control demands have driven changes in communication requirements
 - Demands on grid operations and performance - require higher efficiencies
 - Mature industry standards drive product designs with new advantages

- Using a clean sheet approach and applying proven technology, a re-design reveals big improvements are easily possible over conventional philosophies.
Conventional P&C

Typical Distribution Switchgear with dual Transformers/10 Feeders

Bays are modular, tested individually.

Bays are installed, commissioned on site.
Conventional P&C

Legacy / Traditional

Transformer Protection
Feeder Protection
Hi-Z Bus Diff Protection

Requires dedicated matching CTs for Diff

60+ Protection and Auxiliary relays for this topography

No communications

Hard-wired interlocking

No backup

Manual Safety Procedures

Three Basic Protection Zones - Trf / Fdr / Bus
Communication-based P&C

Legacy / Traditional

- Transformer Protection
- Feeder Protection
- Hi-Z Bus Diff Protection
- Requires dedicated matching CTs for Diff
- 60+ Protection and Auxiliary relays for this topography
- No communications
- Hard-wired interlocking
- No backup
- Manual Safety Procedures

Digital Improvement

- Transformer Protection (sometimes redundant)
- Feeder Protection w/ Bus Interlocking
- 10+ Protection and Auxiliary relays for this topography
- Hard-wired interlocking w/ GOOSE Comms
- Limited backup
- Similar Manual Safety Procedures
- Slower Bus fault detection
Integrated Multi-Object (IMO) P&C

Multi-Zone Protection - Trf / Bus / Fdr

Centralized Approach

Transformer Protection
Hi Speed Bus Protection
Full Feeder Protection

4 IMO Systems provide full redundancy for this topography

All interlocking is internal logic

Minimum GOOSE Comms required

Fully integrated Safety Procedures

Reduced fault times
Integrated Multi-Object (IMO) P&C

Multi-Zone Protection - Trf / Bus / Fdr

Centralized Approach
- Transformer Protection
- Hi Speed Bus Protection
- Full Feeder Protection
- 4 IMO Systems provide full redundancy for this topography
- All interlocking is internal logic
- Minimum GOOSE Comms required
- Fully integrated Safety Procedures
- Reduced fault times

Process Bus Extension
- Transformer Protection
- Hi Speed Bus Protection
- Full Feeder Protection
- 4 IMO Systems provide full redundancy for this topography
- All interlocking is internal logic
- Identical Configuration w/Merging Units adding a Process Bus Ethernet Switch w/ GOOSE Control - extends P&C application flexibility
Key Benefits - Reduce Costs / Simplify Engineering

- **Reduced** the number of protection devices a minimum of 6 to 1
- **Reduce** Installation time and footprint
- **Standardize** the P&C Scheme
- **Eliminate** complex zone interlocking schemes and their coordination.
- **Minimize** testing/commissioning
- **Improved** protection speed and zone coverage for all operational scenarios
- **Optimize** sensor data
- **Enhanced security** for operators and field personnel with proper interlocks and automatic fast OC protection during switching/maintenance.

- **Simplify** fault study coordination / with 100% Bus Zone coverage.
- **Simplify** Trouble-shooting events / DFR analysis / reporting
- **Simplify** SCADA / DCS integration with a single dataset definition.
- **Simplified** migration plan from analog to communication-based system.
- **Simplified** Hybrid solution, leverage the transition into Brownfield facilities with a single scheme
- **Simplified** IEC 61850 engineering solution
- **Future proof** - transition to full IEC 61850 with Merging Units utilizes the same configuration.
Challenge - Conventional P&C

Typical Industrial power system one-line with redundant hierarchical switchgear
Challenge - Conventional P&C

Switchgears 1-6 require over 70+ protection devices excluding SCADA
Switchgears 1-6 are never tested/commissioned as a complete P&C system
Challenge - Conventional P&C

Switchgear #2 typical P&C zones
Conventional P&C

Issues:
- Individual P&C devices setup/testing
- Difficult to system test/commission in isolation
- Relatively slow internal fault protection (>150mS)
- Settings / sensitivity issues affect operations
- SCADA/DCS integration
- Operations / Safety Protocols are incomplete
- Trouble-shooting events requires concerted effort
- DFR analysis / reporting is not optimized and requires considerable effort
Some benefits

- Minimizing copper wiring by using fiber and a substation network at the station level
- Maintain protection zone coverage and some operational flexibility

Challenges

- Optimize sensor data and share it everywhere it is logically needed.
- Communications can be a challenge / testing / troubleshooting
- Proving interlock extensions to other Swgr and multi-vendor integration
- Keeping performance targets
- Providing upstream/downstream data and controls
Integrated Multi-object (IMO) P&C

Key benefits from this centralized application focused in one high performance device are:

- **Reduced** the number of protection devices a minimum of 7 to 1 (reduce installation time, maintenance, testing, and cost with better protection)
- **Eliminate** complex zone interlocking schemes and their coordination issues.
- Perform complete FAT/SAT of the entire PAC system as designed.
- **Simplify** communications, engineering, and fault study requirements.
- **Enhanced security** for operators and field personnel with safety interlocks and automatic fast OC protection during switching/maintenance.
- **Vastly improved arc-flash protection (10x)** for apparatus and personnel safety
- **Standardized** integrated Switchgear P&C scheme (eliminates wiring and settings errors, one device configuration, one firmware to manage if needed, one consolidated alarm/reporting SOE picture)
Centralized P&C Advantage

Switchgears 1-6 now require only 14 P&C devices including SCADA, (+6 ETH Switches)
Conclusions

Due to the flexibility of IEC 61850 architecture there are many possible solutions to such applications and implementation philosophies. Modern high performance IED’s using this distributed architecture provide unique multi-object integration advantages. As the industry continues to evolve and leverage the capabilities provided by this technology even more benefits can be realized.

Some will counter that this “all your eggs in one basket” approach is not feasible, but I would counter that if simplification, safety, repeatability, and ROI are of value, then the existing schemes and implementations have proven the real risk. Redundancy can be added in many ways with this technology, even full redundancy is worth trading devices at 7 for 2 when the engineering, installation, testing, and operations costs are significantly reduced. Today’s modern power grid apparatus are expected to perform at a high level, and our system protection designs should too.
Any Questions?