Impact of Inverter-based Resources on Impedance-based Protection Functions

Mohammad Zadeh, Prashanth Mansani (ETAP)
Ilia Voloh (GE Renewable Energy)

Originally presented at the
46th Annual Western Protective Relay Conference, October 2020
Content

- Introduction
- FRT Requirements
- Test System and High-Level Evaluation
- Impedance-based Protection Function
- Simulation and Testing Results
- Summary
Introduction

- Fault current characteristic of IBRs depends on
 - Its control logic
 - Control settings
 - Pre-fault condition

- For unbalanced faults, IBR may inject
 - only positive sequence current
 - positive sequence and undesired negative sequence
 - positive sequence and desired negative sequence

- Latest German code mandates negative sequence current injection
Introduction

• Phase selection and direction based on negative sequence may be impacted

• Relay vendors use different techniques to implement 21
 • Phase comparator
 • Different methods to estimate X and R

• Analyze the impact by
 • Theory
 • Simulation
 • Hardware Test
FRT Requirements

- Dynamic Positive Sequence (DPS) injection
 \[I_{1q} = jK_1 \times (|V_{1\text{fault}}| - |V_{1\text{pre-fault}}|) \]
 \(\angle V_1 \) is reference

- Dynamic Positive and Negative Sequence (DPNS) injection
 \[I_2 = jK_2 \times (|V_{2\text{fault}}| - |V_{2\text{pre-fault}}|) \angle V_2 \]

- Rest of the capacity may be used for \(I_{1d} \)
Test System and High-Level Evaluation

- Unknown non-homogeneity in DPS and DPNS
Test System and High-Level Evaluation

- Voltage profile of healthy phases (AG fault)
Test System and High-Level Evaluation

- Change in positive sequence voltage angle

Strong System

Weak System
Impedance-based Protection Function

• Phase comparator
 • Mho Characteristic
 \[S_{Pol} = V_{mem1} \]
 \[S_{Opr} = -V_a + Z_{Set}(I_a + K_0 I_0) \]

• In DPS, susceptible to
 • Smaller expansion
 • Larger non-homogeneity

\[S_{Pol} = V_{mem1} (bc) = -j V_{mem1} \]
\[S_{Opr} = -V_{bc} + Z_{Set} I_{bc} \]
Impedance-based Protection Function

- **Quadrilateral (Ground)**

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Polarizing signal</th>
<th>Operating signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactance</td>
<td>jI_0 or jI_2</td>
<td>$Z (I + K_0 I_0) - V$</td>
</tr>
<tr>
<td>Reverse reactance</td>
<td>jI_0 or jI_2</td>
<td>$Z_{Rev} (I + K_0 I_0) - V$</td>
</tr>
<tr>
<td>Right blinder</td>
<td>$Z_R (I_a + K_0 I_0)$</td>
<td>$- V + Z_R (I_a + K_0 I_0)$</td>
</tr>
<tr>
<td>Left blinder</td>
<td>$Z_L (I_a + K_0 I_0)$</td>
<td>$- V + Z_L (I_a + K_0 I_0)$</td>
</tr>
</tbody>
</table>

- **In DPS,**
 - Use of I_2 results in mal-operation
 - Higher Non-homogeneity
Impedance-based Protection Function

• Impedance Measurement
 • Method I
 \[mZ_1 = \frac{V_a}{(I_a+K_0 I_0)} \]
 • Error is introduced in estimated resistance and reactance
 • Method II
 \[R_{seen} = \frac{Im\{V_a\} Im\{I_X\} + Re\{V_a\} Re\{I_X\}}{Re\{I_X\} Re\{I_R\} + Im\{I_X\} Im\{I_R\}} \]
 \[mX_1 = \frac{Im\{V_a\} Re\{I_R\} - Re\{V_a\} Im\{I_R\}}{Re\{I_X\} Re\{I_R\} + Im\{I_X\} Im\{I_R\}} \]
 \[I_R = I_a + \left(\frac{R_0}{R_1}\right) I_0 \text{ and } I_X = I_a + \left(\frac{X_0}{X_1}\right) I_0 \]
 • Error is introduced in estimated resistance
Impedance Measurement

• Method III

\[mX_1 = \text{Im}\{ V_a I_F^* \} / \text{Im}\{ (R_1/X_1 + j)(I_a + K_0 I_0) I_F^* \} \]

\[R_F = \text{Im}\{ V_a (Z_1^* (I + K_0 I_0))^* \} / \text{Im}\{ I_F (Z_1^* (I + K_0 I_0))^* \} \]

• \(I_F \) is estimated by \(3I_0, 3I_2, 1.5I_2 + 1.5I_0 \)

• In DPS,

 • \(3I_2 \) shall be avoided.

 • \(R_F \) estimation is adversely impacted when \(1.5I_2 + 1.5I_0 \) is used

 • \(3I_0 \) may be not be a good choice if there is a mutual coupling
Impedance Measurement

- **Method III Phase loop**

 \[mX_1 = \text{Im}\{V_{bc} \times I_{\text{comp}}^*\} \sin \varphi / \text{Im}\{(R_1/X_1+j)I_{bc} \times I_{\text{comp}}^*\} \]

 \[0.5R_F = \text{Im}\{V_{bc} (Z_1 I_{bc})^*\} / \text{Im}\{2 I_{\text{comp}} (Z_1 I_{bc})^*\} \]

- \(I_{\text{comp}} = j1.73 \ I_2 \) for BC

- This method will not work correctly for DPS injection.
Impedance Measurement

- **Method IV**

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Polarizing signal</th>
<th>Operating signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactance</td>
<td>jI_0 or jI_2</td>
<td>$Z (I + K_0 I_0) - V$</td>
</tr>
<tr>
<td>Reverse reactance</td>
<td>jI_0 or jI_2</td>
<td>$Z_{rev} (I + K_0 I_0) - V$</td>
</tr>
</tbody>
</table>

$$R_F = \text{Im}\{ V_a (Z_1^* (I + K_0 I_0))^* \}/\text{Im}\{I_F (Z_1^* (I + K_0 I_0))^* \}$$

- **In DPS,**
 - $3I_2$ shall be avoided.
 - R_F estimation is adversely impacted when $1.5I_2 + 1.5I_0$ is used.
 - $3I_0$ may be not be a good choice if there is a mutual coupling.
Simulation and Test Results

- **Phase Comparator (Mho)**

 - Expected trip for LG fault in a strong system

 ![Graph](image1.png)

 Expected trip for LG fault in a weak system

 ![Graph](image2.png)

 - Hardware test

<table>
<thead>
<tr>
<th>IBR injection</th>
<th>Fault location (from IBR)</th>
<th>RF</th>
<th>Expected Trip (ETAP)</th>
<th>Relay Output (D60)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPNS</td>
<td>60</td>
<td>35</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DPNS</td>
<td>60</td>
<td>45</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>DPS</td>
<td>60</td>
<td>15</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DPS</td>
<td>60</td>
<td>25</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Simulation and Test Results

• Impedance-based Methods

ΔR_{seen} for LG fault in a strong system at $R_f = 5$ ohms

ΔR_{seen} for LG fault in a weak system at $R_f = 5$ ohms
Simulation and Test Results

- Impedance-based Methods

ΔX_{seen} for LG fault in a strong system at $R_f = 5 \text{ ohms}$

ΔX_{seen} for LG fault in a weak system at $R_f = 5 \text{ ohms}$
Simulation and Test Results

- Method 3 set to over $R_F = 20$ ohm
- LL Fault, DPNS
- Adversely impacted by infeed
Summary

- Lack of negative sequence injection by IBR results in
 - High voltage in healthy phases
 - Smaller voltage angle change (fault and pre-fault)
 - Unknown non-homogeneity effect
- Phase Comparator Method – Smaller resistive coverage for LG, LL faults
- Impedance based for LG faults
 - Method I, II and Method III with 3 I_0 are not affected
 - Method III employing 3 I_2, 1.5I_0+1.5I_2 should be avoided
Thank You!
Questions?