International Drive Distribution
Loop Protection, Lessons Learned
and Improvement Project

G. Craig Merritt, P.E., Senior Member, IEEE
Praveen K. Kumar, P.E., Member, IEEE
Joseph C. Johnson, E.I.T., Member, IEEE
Sebastien C. Billaut, P.E., Senior Member, IEEE
Adam R. Miles, E.I.T, Member, IEEE
John M. Stieber, P.E., Member, IEEE
Brittany Chapman, E.I.T, Member, IEEE
Outline

• Introduction
• History
• Directionality
• Events
• Analysis
• Communications
• Conclusion
• Questions
Intro

- 12.47kV Distribution System along International Drive in Orlando, FL
- Design started in 1999 with installation completed in 2000
- 85 microprocessor directional overcurrent relays
- High reliability requirement
- History of protection operations and system changes
- Improvements to the system throughout its history
History – Prior to 1999

- Area originally supplied by 2 overhead and 4 underground lines, all radial
- Manually operated padmounted switchgear
- Service interruptions leading to decision to upgrade
History – Initial Installation 1999-2000

- Initial design added 4 underground lines
- 85 new microprocessor directional overcurrent relays
- The now eight underground feeders paired to create loops
- Upgraded to four-way padmounted motorized vacuum interrupted switchgear
- New communication system using multiplexed fiber optic network
History – 2008 Upgrade

• Response to increasing reliability issues
• Relay settings reconfigured
 • Automatic tie between loops
 • Loss of source conditions
History – 2013 Upgrade

• Relays reached the end of their effective life
• Decision was made to replace with the same model relay and maintain the DCB/POTT scheme
• Communication network upgraded to more modern multiplexed fiber system
Closed Loop Configuration – Normal Operation
Fault Condition

Closed-Loop Configuration

Swgr Unit A

Swgr Unit B

Swgr Unit D

Swgr Unit C

LEGEND

- Relay sensing direction
- Directional relay with CT
- Fiber-optic cable
- Hard-wired input/output
- Substation circuit breaker

Fault X
Fault Isolation

Closed-Loop Configuration

Swgr Unit A

Swgr Unit B

Swgr Unit D

Swgr Unit C

Fault

X

LEGEND
- Relay sensing direction
- Directional relay with CT
- Fiber-optic cable
- Hard-wired input/output
- Substation circuit breaker

1

2

3

4

5

6

7

8

9

10
DCB/POTT

- DCB is Directional Comparison Blocking
 - Local relay receives a block from remote relay if faults are not in section
- POTT is Permissive Overreaching Transfer Trip
 - Local relay receives a permissive from remote if fault is in section
Directional Element Settings

- **Negative cross product**
 - I_2 or I_0
 - V_2 or V_0
 - **Forward**
 - **Reverse**

- **Which angle 87, 58 or something in between**

- **Positive cross product**
 - I_2 or I_0
 - V_2 or V_0

- **Complex Expression**
 - $Z_2 = \text{Re}[V_2 \cdot (I_2 \cdot L \cdot Z_L)^*]$
 - \(\frac{|I_2|^2}{|Z_2|} \)

- **Diagram**
 - **DER**
 - **Step-Up Transformer**
 - **Sequence network**
 - **Directional Element Characteristics**
 - **Directional Element Settings**
 - **Reverse Threshold**
 - **Forward Threshold**
 - **Z2 PLANE**

- **Line Angle**
 - 87deg
 - 58deg
 - 87deg
 - 58deg
 - 87deg
 - 58deg
 - 58deg

- **Reversal of currents and voltages**
 - V_2 or V_0
 - I_2 or I_0

- **Positive cross product**
 - I_2 or I_0
 - V_2 or V_0

- **Negative cross product**
 - I_2 or I_0
 - V_2 or V_0

- **Forward**
 - **Reverse**

- **87deg**
 - **58deg**
 - **0**
EVENTS

• Battery aging
• Communication bit inconsistencies
• Phase rotation inconsistencies
• Switchgear orientation inconsistencies
• Port connection inconsistencies
ANALYSIS

• There are two protection configurations, 2-Ways and 3-Ways
 • 2-Ways have two source connections and two load connections, 3-Ways have 3 source connections and one load connection
 • The 3-Way configuration is utilized when a third feeder connects to an adjacent loop
• There are 18 2-Ways and 15 3-Ways switchgear

• One relay per source connection
• The I/O for the relaying on 2 Way and 3 Way is quite different
ANALYSIS - 2017

• Examination of the protection system showed consistency between the many relays
• No protection settings concerns were found
• Backup inverse-time overcurrent protection settings vary. This is acceptable and perhaps necessary to coordinate with load Way overcurrent settings as well as feeder relay time-overcurrent settings.
COMMUNICATIONS

- 85 relays, most communicating with two remote relays → 160 communication links
 - 320 communication ports involved
- Each relay has only four address values built into the communication
- Each switchgear has between 4 and 6 communication connections
- Multiplexer system can potentially map to any port on the system

MUST HAVE UNIQUE ADDRESSES
THE CHALLENGE

• Port addressing value allows for only 4 unique addresses
• *Extra comm. bit used to supplement* addressing
• 6 comm. bits used with addressing value to create 256 possible unique addresses
• Relay must receive all appropriate bits from remote relay
• *Incorrect communication will ALARM*
THE SOLUTION

- **Increased** the quantity of possible unique addresses
- **Alarming when incorrect communication is detected**

<table>
<thead>
<tr>
<th>Port</th>
<th>Way</th>
<th>Existing</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmit</td>
<td>2,1</td>
<td>(1-4)</td>
<td></td>
</tr>
<tr>
<td>Receive</td>
<td>1,2</td>
<td>(1-4)</td>
<td></td>
</tr>
<tr>
<td>Bit1</td>
<td>NA</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Bit2</td>
<td>NA</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Bit3</td>
<td>NA</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Bit4</td>
<td>NA</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Bit5</td>
<td>NA</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Bit6</td>
<td>NA</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Bit7</td>
<td>OC Elem.</td>
<td>OC Elem.</td>
<td></td>
</tr>
<tr>
<td>Bit8</td>
<td>OC Elem.</td>
<td>OC Elem.</td>
<td></td>
</tr>
<tr>
<td>Alarm Variable</td>
<td>CH. FAIL</td>
<td>CH.FAILBit1Bit2Bit3Bit4Bit5Bit6Bit7Bit8</td>
<td></td>
</tr>
</tbody>
</table>
COMMISSIONING PROCESS

• Process setting updates consecutively through the loops (1, 2, 3, 4)
 • Read As-Found settings
 • Update settings (in pairs) and test changes
 • Collect data: comm. alarm status, and phasors on commissioning of the settings
 • Read As-Left Settings
• Ensure every relay has no alarms before the end of the day
CONCLUSION

• The I-Drive system has been reliably delivering power for the last 21 years
• History of few events and subsequent changes to the system
• Special directional POTT/DCB scheme
• Secure communication addressing system
QUESTIONS?