Double-Ended Traveling-Wave Fault Locating Without Relay-to-Relay Communications

David López Cortón and Jorge Vaquero Melado
Red Eléctrica de España

Jesús Cruz, Richard Kirby, Yusuf Zafer Korkmaz, Gianfranco Patti, and Greg Smelich
Schweitzer Engineering Laboratories, Inc.

Red Eléctrica Group
Established 1985

- First company in the world dedicated exclusively to electricity transmission and Spanish electricity system operation
- Established itself as a global operator of essential infrastructure, managing electricity transmission grids in Spain, Peru, Chile, telecommunications networks (fiber optics and satellites), and important elements of innovation and technological development
Project drivers

Accurate fault locating
- Present limitations: accuracy
- Outage times

Adaptive autoreclosing
- Mandatory autoreclosing in overhead lines, not allowed in cables
- Large security margins present in algorithms

New possibilities
- Line monitoring
- High-voltage equipment analysis
- Protection for systems with high penetration of power electronics

Pilot installations

N. Valladolid-to-Mudarra
- 220 kV hybrid line, 21.85 km overhead + 2.42 km underground
- Adaptive autoreclosing cancel logic

Spain-to-Morocco 1 and 2
- 400 kV hybrid lines, 9.33 km overhead + 31.3 km submarine + 22.21 km overhead
- Accurate fault locating + adaptive autoreclosing cancel logic

Casaquemada-to-Onuba
- 220 kV overhead line, 61.98 km
- Accurate fault locating
- Initially installed with no relay-to-relay communications
Double-ended TW-based fault locating

Principle of operation

General equation
\[M = \frac{LL}{2} \left(1 + \frac{t_L - t_R}{TWLPT} \right) \]

CT cable delay compensation
\[M = \frac{LL}{2} \left[1 + \frac{(t_L - TWCP_TL) - (t_R - TWCP_TR)}{TWLPT} \right] \]

Current TWs: mode and phase reference
- Alpha mode for single-line-to-ground faults
- Beta mode for line-to-line faults

Time-stamping TW arrival time

Differentiator-smoother filter

Response to a step

Response to a ramp
Time-stamping TW arrival time
Interpolation method

Extracting TW time stamps
Method 1: IEEE COMTRADE header files

Terminal L

[Fault_Location]
SE_TW_Location1
SE_TW_Location2
SE_TW_Location3
SE_TW_Location4
DE_TW_Location
SE_Z-Based_Location
DE_Z-Based_Location
First_TW_Time_Local
First_TW_Time_Remote

Terminal R

[Fault_Location]
SE_TW_Location1
SE_TW_Location2
SE_TW_Location3
SE_TW_Location4
DE_TW_Location
SE_Z-Based_Location
DE_Z-Based_Location
First_TW_Time_Local
First_TW_Time_Remote
Extracting TW time stamps
Method 2: DNP3 LAN/WAN over Ethernet

- Poll UHS relays or RTUs
- Compute TW arrival time difference
- Compute fault location
- Time difference is less than TWLPT?
 - Yes
 - Data are coherent, good quality, and changed?
 - Yes
 - Start
 - No
 - Compute fault location
 - No

Extracting TW time stamps
Method 3: transient records with 1 MHz sampling

Arrival times must be compensated for by CT cable delay
Offline methodology

Manual calculations

Apply TW arrival times obtained from the methods previously described in equation

\[M = \frac{LL}{2} \cdot \left(1 + \frac{t_L - t_R}{TWLPT}\right) \]

Software tools: Bewley diagram

- Plot MHR recordings from both ends of line
- Align time cursors to initial TW peaks

Field experience for internal BG fault

220 kV, 61.98 km Casaquemada-to-Onuba line
IEEE COMTRADE header files

Terminal L

\[\Delta t = t_{L_comp} - t_{R_comp} = -26.798 \mu s \]

\[M = \frac{61.98}{2} \left(1 + \frac{-26.798}{210.50} \right) = 27.045 \text{ km} \]

Terminal R

\[\Delta t = t_{L_comp} - t_{R_comp} = -26.798 \mu s \]

\[M = \frac{61.98}{2} \left(1 + \frac{-26.798}{210.50} \right) = 27.045 \text{ km} \]

Transient records with 1 MHz sampling

\[\Delta t = (t_{L_uncomp} - \text{TWCP}_L) - (t_{R_uncomp} - \text{TWCP}_R) \]

\[\Delta t = (-27.037) - (\text{TWCP}_L - \text{TWCP}_R) = -26.798 \mu s \]
Bewley diagram

11/29/19 Casaquemada 30.573 3.294 33.449 0.418 33.872 0.005 33.867
Onuba 25.332 2.753 28.212 0.127 28.108 0.023 28.085
12/8/19 Casaquemada 24.220 2.723 26.728 0.215 27.045 0.102 26.943
Onuba 32.081 2.928 34.755 0.254 34.935 0.074 35.009
12/17/19 Casaquemada 25.922 3.115 28.758 0.279 29.138 0.101 29.036
Onuba 29.825 3.091 32.714 0.202 32.842 0.074 32.916
12/26/19 Casaquemada 55.398 4.033 33.153 26.278 59.210 0.221 59.431
Onuba 2.154 0.367 2.505 0.016 2.770 0.249 2.521
1/1/20 Casaquemada 30.447 3.420 33.343 0.524 33.908 0.041 33.867
Onuba 25.162 2.923 27.918 0.167 28.072 0.013 28.085

BG faults on Casaquemada-to-Onuba line
Conclusions

- DETWFL results can be obtained offline by using
 - Manual calculations (may be automated using DNP3 protocol over Ethernet)
 - Software tools (Bewley diagram)
- REE is gaining experience with UHS relays for TWFL
 - Five faults occurred while relay-to-relay communications were unavailable
 - DETWFL results obtained offline were accurate to within one tower span
 - Confident to move forward with project
- Offline DETWFL results can confirm SETWFL result(s), help select alternative result, or provide TW-based results when results from other methods are not available

Questions?