Combining Battery and AC Sources for More Reliable Control Power

Edmund O. Schweitzer, III, David E. Whitehead, Michael Thompson, Krishnanjan Gubba Ravikumar, Austin Wade, Bruce Hall, and Sean Robertson
Schweitzer Engineering Laboratories, Inc.

Overview

- Reliable control power
- Combining control power sources
- Energy storage
- Diversity strategies
- Applications that benefit from reliable control power
DC system

![Diagram of a DC system](image)

1950s battery bank
My grandfather’s battery bank

![Image of the 1950s battery bank](image)
The year is 2021…

Traveling-wave relays
Pocket computers
Landing rockets
Today’s battery banks

How does control power fail?

Battery failure
DC control system faults
Battery charger failure
Human error
Why use station batteries?

- Provide isolation between protection and the power system it protects
 - Fault depresses voltage
- Provide reliable power until repairs can be made to station service or charger
 - Energy storage capacity
- Provide momentary high current for tripping
 - Maximum discharge rate

Consequences of interruptions

Loss of availability

<table>
<thead>
<tr>
<th>IED</th>
<th>Startup time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer A relay</td>
<td><5</td>
</tr>
<tr>
<td>Manufacturer B relay</td>
<td>30</td>
</tr>
<tr>
<td>Automation controller</td>
<td>60</td>
</tr>
<tr>
<td>Station computer</td>
<td>500 – 1,000</td>
</tr>
</tbody>
</table>
Consequences of failure

1. Catastrophically damages equipment
2. Leads to costly repairs
3. Endangers personnel and public

Today’s solutions

Dual station battery systems
Monitoring
Capacitive trip units
Uninterruptible power supplies

<table>
<thead>
<tr>
<th>Computer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PS1</td>
<td></td>
</tr>
<tr>
<td>PS2</td>
<td></td>
</tr>
</tbody>
</table>

Dual power supplies
Water, water, everywhere,
Nor any drop to drink

Power, power, everywhere,
Nor any source avails
Can we use all sources of control power?

Combine dc with isolated ac and store energy in large capacitor
Ride-through times for total loss of source

Output voltage depends on input and load
Designing reliability using diversity

- Connects to different source locations
- Uses different phases
- Systems A and B connect to different sources

Applications benefitting from reliable control power

- Stations without dual batteries
- Battery maintenance
- Stations with no battery
- Safety scheme
- Electromechanical relay replacement
Typical station without dc redundancy

- CPSC is in branch circuits
- CPSC provides alternative energy source to trip breakers

Maintenance and human performance

- Eliminates need for portable battery banks
- Provides energy to trip breakers in an emergency
- Reduces human errors
Electromechanical relay applications

- Capacitive trip device trips breaker
- Relays do not require a power source to operate
- Mechanical flags indicate contact operation

Complements digital relay upgrades

- Provides ride-through for momentary interruptions
- Can even replace capacitive trip units
- Keeps relay powered long enough to store event record
Safety schemes protect people and equipment

Safety schemes protect people and equipment
CPSC solves most auxiliary supply issues

- Capacitor provides ride-through during short circuits
- AC supplies are available if station is energized
 - Loss of station service
 - Loss of charger
- Capacitor provides momentary high current when needed
 - Hidden battery failures
 - Human error-caused battery disconnection
 - Out-of-service battery for testing or maintenance
- Black station safety logic can preemptively open breakers

Conclusion

- Reliability of dc systems is critical
- Substations contain many power sources
- Multiple unreliable sources can produce a reliable source
- Many applications could benefit from combining control power
Questions?