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Reactor Configurations Considered

Presentation will mostly be focused on air core reactors in a wye-
grounded and ungrounded configuration



Typical Turn to Turn Reactor Fault Detection 
Schemes 

As per, IEEE Guide for the Protection of Shunt Reactors, ANSI/IEEE 
C37.109-1988, following schemes are generally used for detecting turn-
turn reactor faults

• Negative Sequence Time Overcurrent (51Q)

• Voltage Differential Scheme (87V)

• Negative Sequence Directional Element (32Q)



New Algorithm for Turn-to-Turn Fault Detection

Fundamentals  of the new algorithm

Negative sequence voltage normalization

𝑉2

𝑉1
=

𝑉𝑎+𝑎2𝑉𝑏+𝑎𝑉𝑐

𝑉𝑎+𝑎𝑉𝑏+𝑎2𝑉𝑐
(1)

Where the operator a is define as 1𝑒120°𝑖

Negative sequence current normalization

𝐼2

𝐼1
=

𝐼𝑎+𝑎2𝐼𝑏+𝑎𝐼𝑐

𝐼𝑎+𝑎𝐼𝑏+𝑎2𝐼𝑐
(2)



New Algorithm for Turn-to-Turn Fault Detection

Fundamentals  of the new algorithm

Consider 𝑍𝑎, 𝑍𝑏, & 𝑍𝑐 phases to be reactor impedances for A, B, and C-Phases
respectively.

𝐼2

𝐼1
=

𝑉𝑎−𝑉𝑛
𝑍𝑎

+𝑎2𝑉𝑏−𝑉𝑛
𝑍𝑏

+𝑎
𝑉𝑐−𝑉𝑛

𝑍𝑐
𝑉𝑎−𝑉𝑛

𝑍𝑎
+𝑎

𝑉𝑏−𝑉𝑛
𝑍𝑏

+𝑎2𝑉𝑐−𝑉𝑛
𝑍𝑐

(3)

Where,𝑉𝑛, as shown in the previous figure, is zero for solidly grounded reactors.

For 𝑍𝑎 = 𝑍𝑏 = 𝑍𝑐 = 𝑍

𝐼2

𝐼1
=

𝑉𝑎−𝑉𝑛
𝑍

+𝑎2𝑉𝑏−𝑉𝑛
𝑍

+𝑎
𝑉𝑐−𝑉𝑛

𝑍
𝑉𝑎−𝑉𝑛

𝑍
+𝑎

𝑉𝑏−𝑉𝑛
𝑍

+𝑎2𝑉𝑐−𝑉𝑛
𝑍

(4)



New Algorithm for Turn-to-Turn Fault Detection

Fundamentals  of the new algorithm

With 𝑍𝑎 = 𝑍𝑏 = 𝑍𝑐 = 𝑍 , equation (4) reduces to:

𝐼2

𝐼1
=

𝑉𝑎+𝑎2𝑉𝑏+𝑎𝑉𝑐

𝑉𝑎+𝑎𝑉𝑏+𝑎2𝑉𝑐
(5)  

Comparing equations (1) and (5) gives 
𝑉2

𝑉1
=

𝐼2

𝐼1
. 

This is true for all balanced and unbalanced system voltages as long as
reactor impedances are nearly equal.

During turn − to − turn faults,
𝑉2

𝑉1
≠

𝐼2

𝐼1
. The phasor difference between 

𝑉2

𝑉1
𝑎𝑛𝑑

𝐼2

𝐼1
will be used to compute the Operate quantity



Faulted Phase Identification

• Identification of the faulted phase is based on the phasor angle of 
the Operate quantity. 

▪ Phasor angle of 180𝑜 indicates an A-Phase turn-to-turn fault

▪ Phasor angle of 300𝑜 indicates a B-Phase turn-to-turn fault

▪ Phasor angle of 60𝑜 indicates a C-Phase turn-to-turn fault

• Due to the assumptions made during the derivation of the phase 
identification , a ± 30𝑜 tolerance is recommended

𝐷𝑖𝑓𝑓𝑎𝑛𝑔𝑙𝑒 Phase selection decision

150𝑜 ≤ 𝐷𝑖𝑓𝑓𝑎𝑛𝑔𝑙𝑒 ≤ 210𝑜 𝑇𝑢𝑟𝑛 𝑡𝑜 𝑡𝑢𝑟𝑛 𝑓𝑎𝑢𝑙𝑡 𝑖𝑛 𝑝ℎ𝑎𝑠𝑒 𝐴

270𝑜 ≤ 𝐷𝑖𝑓𝑓𝑎𝑛𝑔𝑙𝑒 ≤ 330𝑜 𝑇𝑢𝑟𝑛 𝑡𝑜 𝑡𝑢𝑟𝑛 𝑓𝑎𝑢𝑙𝑡 𝑖𝑛 𝑝ℎ𝑎𝑠𝑒 𝐵

30𝑜 ≤ 𝐷𝑖𝑓𝑓𝑎𝑛𝑔𝑙𝑒 ≤ 90𝑜 𝑇𝑢𝑟𝑛 𝑡𝑜 𝑡𝑢𝑟𝑛 𝑓𝑎𝑢𝑙𝑡 𝑖𝑛 𝑝ℎ𝑎𝑠𝑒 𝐶



Application of the New Algorithm
A. Setting Philosophy

• Maximum normal voltage imbalance of 10%, is considered in determining the 

tolerances of  
𝑉2

𝑉1
and 

𝐼2

𝐼1
. If the maximum expected PT and CT measurement errors are 

± 5% of the measured values, the worst expected steady state difference, Diff𝑠𝑡𝑒𝑎𝑑𝑦, 
will be given as:

𝑉2

𝑉1
= 10 x 1.05 = 10.5% 

𝐼2

𝐼1
= 10 x 0.95 = 9.5%

Diff𝑠𝑡𝑒𝑎𝑑𝑦 =
𝑉2

𝑉1
−

𝐼2

𝐼1
= 10.5 − 9.5 = 1.0%

• Diff𝑝𝑖𝑐𝑘𝑢𝑝, can not therefore be set lower than 1.0%. 

• Also as per IEEE Std C57.21-2008, the maximum deviation of the impedance in any of 
the phases shall be within ±2.0% of the average impedance of the three phases. 
Therefore, all practical purposes, Diff𝑠𝑡𝑒𝑎𝑑𝑦, as computed above is sufficient. 



Application of the New Algorithm
A. Setting Philosophy

• To protect the reactor, Diff𝑝𝑖𝑐𝑘𝑢𝑝 is set to pick up for at least 5% shorting in 
the reactor. At that fault level,

𝑉2

𝑉1
≪

𝐼2

𝐼1

• Consider a 5% shorting in B-Phase reactor turns. 
𝐼2

𝐼1
is computed as:

𝐼2

𝐼1
=

𝑉𝑎
𝑍𝑎

+𝑎2 𝑉𝑏
0.95𝑍𝑏

+𝑎
𝑉𝑐
𝑍𝑐

𝑉𝑎
𝑍𝑎

+𝑎
𝑉𝑏

0.95𝑍𝑏
+𝑎2𝑉𝑐

𝑍𝑐

• If an infinite source is considered, Diff𝑝𝑖𝑐𝑘𝑢𝑝 is calculated as:

Diff𝑝𝑖𝑐𝑘𝑢𝑝 =
𝑉2

𝑉1
−

𝐼2

𝐼1
≅

𝐼2

𝐼1
× 100 = 1.7%



Application of the New Algorithm
A. Setting Philosophy

• Due to the assumptions involved in this derivation, a safety factor of 2.0 is 
applied to both Diff𝑝𝑖𝑐𝑘𝑢𝑝, and  Diff𝑠𝑡𝑒𝑎𝑑𝑦.

• Diff𝑝𝑖𝑐𝑘𝑢𝑝 is selected from 2.0% < Diff𝑝𝑖𝑐𝑘𝑢𝑝 < 3.4%

• The Operate quantity is therefore selected so as to be above the normal 
operating steady state value but below the desired fault pickup value. A 
pickup value of 2.5% is selected.

• The past eight real-time operating differential values, including the present 
value are computed and averaged over a power cycle. The averaged 
differential value, Diff𝑎𝑣𝑒𝑟𝑎𝑔𝑒, is compared against the Diff𝑝𝑖𝑐𝑘𝑢𝑝. 

𝐷𝑖𝑓𝑓𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑛) =
1

𝑝
෍

𝑘=1

𝑝=8

𝐷𝑖𝑓𝑓𝑟𝑒𝑎𝑙𝑡𝑖𝑚𝑒(𝑛 + 1 − 𝑘)



Application of the New Algorithm
B. Logic Implementation – Ungrounded/Tertiary Connected Reactors

Existing Relay Logic 



Application of the New Algorithm
B. Logic Implementation – Grounded Reactors

Existing Relay Logic 



Application of the New Algorithm
B. Logic Implementation – Sensitive Protection Blocking Logic for Grounded Reactors



Field Application of the Proposed Algorithm

Ungrounded 50MVAR Tertiary Reactor #9, 34.5kV



Field Application of the Proposed Algorithm

Ungrounded 50MVAR Tertiary Reactor #9, 34.5kV

Event: 08/26/2017 

Tripped on 87HG1 



Field Application of the Proposed Algorithm

Ungrounded 50MVAR Tertiary Reactor #9, 34.5kV

Event: 08/26/2017

Field Findings: Failure on A-Phase



Field Application of the Proposed Algorithm
Ungrounded 50MVAR Tertiary Reactor #9, 34.5kV

Event: 08/26/2017 

With the New Algorithm

Measured (low fault region),
𝐷𝑖𝑓𝑓𝑎𝑣𝑔 = 5.32%

And Diffangle = 199𝑜



Field Application of the Proposed Algorithm

Ungrounded 50MVAR Tertiary Reactor #9, 34.5kV

Event: 11/12/2017

Tripped on 87HG1 



Field Application of the Proposed Algorithm

Ungrounded 50MVAR Tertiary Reactor #9, 34.5kV

Event: 11/12/2017 

Field Findings: Failure on C-Phase



Field Application of the Proposed Algorithm

Ungrounded 50MVAR Tertiary Reactor #9, 34.5kV

Event: 11/12/2017

With the New Algorithm

Measured (low fault region),
𝐷𝑖𝑓𝑓𝑎𝑣𝑔 = 17.5%

And Diffangle = 73𝑜



Field Application of the Proposed Algorithm

Ungrounded 50MVAR Tertiary Reactor #9, 34.5kV - Energization

Observation: There’s a sudden  loss of DC 
in the B-Phase reactor current.



Field Application of the Proposed Algorithm

Ungrounded 50MVAR Tertiary Reactor #9, 34.5kV - Energization

Implications

a) 4.0 seconds time delay is recommended. 
This is longer than the time duration of 3 
time constants (X/R = 500) required for 
the transients to decay down to 95% of 
their final steady state value for typical 
Air Core Reactor X/R ratios of 300-500



Stability of the Algorithm Against External 
Faults

Ungrounded 50MVAR Tertiary Reactor #9, 34.5kV

Simulated A-G Bus fault on the 115kV bus



Stability of the Algorithm Against External 
Faults

Ungrounded 50MVAR Tertiary Reactor #9, 34.5kV

Simulated B-C Bus fault on the 115kV bus



Field Application of the Proposed Algorithm

25 MVAR Solidly Grounded Reactor  #1, 115kV



Field Application of the Proposed Algorithm

25 MVAR Solidly Grounded Reactor  #1, 115kV

Event: 04/14/2018 

51P1T picks up but 

Reactor trips on 

50P1 element



Field Application of the Proposed Algorithm

25 MVAR Solidly Grounded Reactor  #1, 115kV

Event: 04/14/2018 

Field Findings: Failure on A-Phase



Field Application of the Proposed Algorithm

25 MVAR Solidly Grounded Reactor  #1, 115kV

Event: 04/14/2018 

With New Algorithm

Measured,
𝐷𝑖𝑓𝑓𝑎𝑣𝑔 = 10%

And Diffangle = 196𝑜



Field Application of the Proposed Algorithm

25 MVAR Solidly Grounded Reactor  #1, 115kV - Energization



Stability of the Algorithm Against 
External Faults

25 MVAR Solidly Grounded Reactor  #1, 115kV

A-G fault 7.5 miles from the substation



Stability of the Algorithm Against External 
Faults

25 MVAR Solidly Grounded Reactor  #1, 115kV

A-C fault 5.5 miles from the substation



De-energization of Mutually Coupled Shunt 
Compensated Line

Simplified Circuit of a 75 mile Double Circuited Line

Fault occurred on Line #1, with no automatic 
reclosing. Oil filled shunt reactor tripped via 
negative-sequence time-overcurrent, more 
than 80 cycles after opening of line-end
breakers .

51Q was set to pick up at 20% of the shunt 
reactor rating.



De-energization of Mutually Coupled Shunt 
Compensated Line

Evaluation of the algorithm

Observation: Due to relay’s signal processing 
algorithm, the turn-to-turn fault detection 
algorithm is not immune to mis-operation

Recommendation: Torque  control the 
algorithm using sensitive protection blocking 
logic



Conclusions

• 51Q is slow and can’t sensitively  detect turn-to-turn faults

• 87TG1 does have a definite time delay setting of 5.0s. This is still a very 
slow element

• Proposed method operates more sensitively and much faster than the 
current settings standard.

• Faster operation may help save some reactor stacks especially for 
configurations where  more than one reactor is need. High  voltage air 
core reactors are typically stacked together

• Proposed algorithm not only allows for faster detection of reactor turn-to-
turn faults, but also allows for the faulty phase identification, which helps 
minimize time and resources spent on fault location investigations



Questions?


