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• Fundamentals of compensated networks

• Calculation of fault quantities for basic ground fault protection 
analysis purposes

• Considerations to convert from a solidly/low resistance grounded 
system to a compensated network 

• Reduction of fire risk during a ‘wire down’ fault

• Special protection challenges in compensated networks 

• Multi-frequency admittance based ground-fault protection
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• High impedance
grounded network

▪ Arc
Suppression
Coil (ASC) or
Petersen coil

• Resonant(ly) 
grounded
network

▪ Compensated
network

▪ Parallel RLC-
resonance circuit

Fundamentals of compensated networks
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Fundamentals of compensated networks
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Fundamentals of compensated networks
Network damping (Id)

The total shunt losses are known 
as the network damping (Id), 
which is due to shunt losses of 
conductors, losses of the ASC 
and losses introduced by parallel 
resistor (if applied). 

Network detuning (Iv)

Detuning is the relative value of 
the inductive current of the coil 
or coils compared to the 
capacitive current of network 
phase-to-ground capacitances

Typically both quantities are 
expressed in primary amperes!
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Fundamentals of compensated networks
Network damping (Id)

The total shunt losses are known 
as the network damping (Id), 
which is due to shunt losses of 
conductors, losses of the ASC 
and losses introduced by parallel 
resistor (if applied). 

Network detuning (Iv)

Detuning is the relative value of 
the inductive current of the coil 
or coils compared to the 
capacitive current of network 
phase-to-ground capacitances

Typically both quantities are 
expressed in primary amperes!

Iv Id
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ഥ𝑈𝑜
ℎ𝑒𝑎𝑙𝑡ℎ𝑦

= −𝑈𝑃𝐸 ∙
ҧ𝐼𝑢𝑁𝑒𝑡𝑡𝑜𝑡

𝐼𝑑 − 𝑗 ⋅ 𝐼𝑣

• 𝐼𝑣 = Network 
detuning [A]

Fundamentals of compensated networks:

Neutral point voltage during healthy state

• UPE = the operating 
phase-to-ground 
voltage [V] 

• ҧ𝐼𝑢𝑁𝑒𝑡𝑡𝑜𝑡 = asymmetrical part 
of the total network 
admittance [A]

• 𝐼𝑑 = Network 
damping [A]
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Fundamentals of compensated networks:

Neutral point voltage during ground fault
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ഥ𝑈𝑜
𝑓𝑎𝑢𝑙𝑡𝑦

= −
𝑈𝑃𝐸
2

𝑅𝐹 ⋅ (𝐼𝑑 − 𝑗 ⋅ 𝐼𝑣) + 𝑈𝑃𝐸

[k]

Fundamentals of compensated networks:

Neutral point voltage during ground fault
Neutral point voltage magnitude 𝑈𝑜 [pu] 

as a function of fault resistance 𝑅𝐹 [k]

• 𝐼𝑣 =network detuning 
value [A]

• UPE = operating 
phase-to-ground 
voltage [V] 

• 𝐼𝑑 = network 
damping [A]

• 𝑅𝐹 = fault 
resistance []
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Fundamentals of compensated networks:

Phase voltages during ground fault
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Faulted phase voltage is inverse to 
the neutral point voltage 𝑈𝑜 !

Fundamentals of compensated networks:

Phase voltages during ground fault

ഥ𝑈𝐴 = ത𝐸𝐴 + ഥ𝑈𝑜
ഥ𝑈𝐵 = ത𝐸𝐵 + ഥ𝑈𝑜
ഥ𝑈𝐶 = ത𝐸𝐶 + ഥ𝑈𝑜

ത𝐸𝐴 = 𝑈𝑃𝐸 , ത𝐸𝐵 = ത𝑎 ∙ 𝑈𝑃𝐸,  𝐸𝐶 = ത𝑎2 ∙ 𝑈𝑃𝐸

The phase voltages are affected by the neutral 
point voltage:
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Fundamentals of compensated networks:

Phase voltages during ground fault

ഥ𝑈𝐴 = ത𝐸𝐴 + ഥ𝑈𝑜
ഥ𝑈𝐵 = ത𝐸𝐵 + ഥ𝑈𝑜
ഥ𝑈𝐶 = ത𝐸𝐶 + ഥ𝑈𝑜

ത𝐸𝐴 = 𝑈𝑃𝐸 , ത𝐸𝐵 = ത𝑎 ∙ 𝑈𝑃𝐸,  𝐸𝐶 = ത𝑎2 ∙ 𝑈𝑃𝐸

The phase voltages are affected by the neutral 
point voltage:

Over-voltages on 
healthy phases!

Line voltages are not disturbed!
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Fundamentals of compensated networks:

Ground fault current
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𝐼𝐸𝐹
1

=
(𝐼𝑑 − 𝑗 ⋅ 𝐼𝑣) ⋅ 𝑈𝑃𝐸

𝑅𝐹 ⋅ (𝐼𝑑 − 𝑗 ⋅ 𝐼𝑣) + 𝑈𝑃𝐸

Fundamentals of compensated networks:

Ground fault current
Ground fault current magnitude as a 

function of fault resistance 𝑅𝐹 [k].

• 𝐼𝑣 =network 
detuning [A]

• UPE = operating 
phase-to-ground 
voltage [V] 

• 𝐼𝑑 = network 
damping [A]

• 𝑅𝐹 = fault 
resistance []
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Network hardening,                    
voltage ratings, 

compatible equipment

Network 
balancing

Set-up of ASC, coil
controller and ground-fault

detection functions

Considerations to convert from a solidly/low resistance grounded system to a 
compensated network 

Residual voltage Uo [kV]

Residual current Io [A]

Phase A-to-ground voltage [kV]
Phase B-to-ground voltage [kV]

Phase C-to-ground voltage [kV]
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Reduction of fire risk during a ‘wire down’ fault

Illustration on how:

• fault resistance (RF),

• network damping (Id), and

• detuning (Iv)

affect to the faulted phase voltage (UFPE) and ground fault current magnitude

(IEF) in compensated 22kV network with passive ASC.

Condition set for ground fault 
current magnitude fulfilled

Condition set for faulted phase 
voltage magnitude fulfilled

Both conditions fulfilled
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Reduction of fire risk during a ‘wire down’ fault

• In order to construct a compensated network 
with passive ASC with extremely low 
damping and detuning value, large network 
can be splitted into smaller networks 

• Challenges of such small compensated 
network with very small value of damping 
and detuning include:

• Inherent sensitivity to admittance unbalance
• Risk of over-voltages during open-phase 

conditions
• Long time constant of DC-component of fault 

current, oscillations, and transients during 
faults and after their disconnection

• Ferroresonance

“Large network can be 
splitted into smaller 
networks” by applying 
isolation transformers
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Special protection challenges: re-striking or intermittent ground fault
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Novel Multi-Frequency Admittance based ground fault protection, MFA

Facts

• Single function valid for all ground fault types

• Several novel features: 

o Multi-frequency admittance (MFA) measurement, 

Cumulative Phasor Summing (CPS) calculation, 

etc.

• Thoroughly tested in practical live networks! 
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Novel multi-frequency admittance based ground fault protection
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Conclusion
• Compensated networks could be a solution to the challenges faced today by North 

American utilities to detect high impedance faults in electrical grids.

• Compensated networks offer the greatly lower energy levels in case of a ground fault 
compared with solidly grounded networks, and therefore the likelihood of initiating a 
fire is reduced dramatically.

• The network design of solidly grounded network may not be applicable or need 
modifications to comply with resonant earthing - change from  high fault currents to 
high over-voltages 

• Ground fault in compensated networks is very different fault type than short-circuit -
dedicated protection functionality is needed for example against restriking ground 
faults 

• With modern protection algorithms such as the multi-frequency admittance based
protection provide a reliable and selective protection scheme!
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Thank You!
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