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Fundamentals of compensated networks
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Fundamentals of compensated networks
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Fundamentals of compensated networks
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Network damping (1))

The total shunt losses are known
as the network damping (1),
which is due to shunt losses of
conductors, losses of the ASC
and losses introduced by parallel
resistor (if applied).

Network detuning (1)

Detuning is the relative value of
the inductive current of the coil
or coils compared to the
capacitive current of network
phase-to-ground capacitances

Typically both quantities are
expressed in primary amperes!
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Fundamentals of compensated networks
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Network damping (1))

The total shunt losses are known
as the network damping (1),
which is due to shunt losses of
conductors, losses of the ASC
and losses introduced by parallel
resistor (if applied).

Network detuning (1)

Detuning is the relative value of
the inductive current of the coil
or coils compared to the
capacitive current of network
phase-to-ground capacitances

Typically both quantities are
expressed in primary amperes!
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Fundamentals of compensated networks:

Neutral point voltage during healthy state
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Healthy state “Resonance curve”
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Fundamentals of compensated networks:

Neutral point voltage during ground fault
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Fundamentals of compensated networks: Neutral point voltage magnitude U, [pu]

Neutral point voltage during ground fault as a function of fault resistance Ry [kQ]
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Fundamentals of compensated networks:

Phase voltages during ground fault
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Fundamentals of compensated networks:
The phase voltages are affected by the neutral

Phase voltages during ground fault point voltage:
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Fundamentals of compensated networks:
The phase voltages are affected by the neutral
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Fundamentals of compensated networks: Faulty Statt?: “V-curve”
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Fundamentals of compensated networks:

Ground fault current
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Ground fault current magnitude as a
function of fault resistance Ry [kQ].
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Considerations to convert from a solidly/low resistance grounded system to a

compensated network /
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Reduction of fire risk during a ‘wire down’ fault
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Reduction of fire risk during a ‘wire down’ fault

HV:MV
* In order to construct a compensated network

with passive ASC with extremely low
damping and detuning value, large network
can be splitted into smaller networks

* Challenges of such small compensated
network with very small value of damping
and detuning include:

* Inherent sensitivity to admittance unbalance

* Risk of over-voltages during open-phase
conditions

* Long time constant of DC-component of fault
current, oscillations, and transients during
faults and after their disconnection

® Ferroresonance

“Large network can be
splitted into smaller

networks” by applying
isolation transformers

HV:MV
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Special protection challenges: re-striking or intermittent ground fault
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Novel Multi-Frequency Admittance based ground fault protection, MFA

Facts
 Single function valid for all ground fault types

 Several novel features:

o Multi-frequency admittance (MFA) measurement,
Cumulative Phasor Summing (CPS) calculation,

etc.
» Thoroughly tested in practical live networks!
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TEST: R;=0 OHM, RE-STRIKING FAULT, COIL DETUNING: -2A, DAMPING: 11A, FAULT DUR.: 1.5 SEC., PROTECTION OPERATE TIME: 1.0 SEC.
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TEST: R;=20000 OHM, CONTINUOUS FAULT, COIL DETUNING: -2A, DAMPING: 11A, FAULT DUR.: 1.5 SEC., PROTECTION OPERATE TIME: 1.0 SEC.
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Conclusion

* Compensated networks could be a solution to the challenges faced today by North
American utilities to detect high impedance faults in electrical grids.

 Compensated networks offer the greatly lower energy levels in case of a ground fault
compared with solidly grounded networks, and therefore the likelihood of initiating a
fire is reduced dramatically.

* The network design of solidly grounded network may not be applicable or need
modifications to comply with resonant earthing - change from high fault currents to
high over-voltages

* Ground fault in compensated networks is very different fault type than short-circuit -
dedicated protection functionality is needed for example against restriking ground
faults

* With modern protection algorithms such as the multi-frequency admittance based
protection provide a reliable and selective protection scheme!
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Thank You!



Can compensated networks be an alternate solution to
reduce the risk of ground faults causing forest fires?




