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1. What is the difference between Grounded and Ungrounded systems?

A grounded system is an electric network where zero-sequence
currents are produced when a fault involving ground occurs.

In ungrounded system a phase to ground fault produces zero-
sequence voltage and no zero-sequence current.



2. What is the purpose of designing grounded or ungrounded systems?

Fault current in relation with voltage is important to allow location of the fault on a large transmission system.
No matter how large an ungrounded system is, when a phase is grounded, the entire system sees the same zero
sequence voltage. No protection can effectively isolate a small faulted section. The only information that can
be derived is that a fault is present.

In ungrounded system the occurrence of large zero sequence voltage causes large overvoltage conditions
during faults. However, the absence of current allows the detection of the fault occurrence without heat and
flashing damage which is very useful at lower voltage where strong sources can create high energy arc flash
conditions.

Grounded system allows for reduction of the overvoltage conditions which allows for lower insulation level on
equipment. This is cost effective on higher system nominal voltage.

For these reasons:

* transmission systems are grounded and should remain grounded

* ungrounded systems are suited for high energy, small and lower voltages application (industrial, or
generator buses).



3. Refresher on sequence Networks.
The Purpose of sequence networks

Sequence transform turns unbalanced phasors into balanced phasors:
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3. Refresher on sequence Networks.
The Purpose of sequence networks
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3. Refresher on sequence Networks.
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3. Refresher on sequence Networks.
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4. So what about “ground source” or “sources of zero sequence currents”?

“Ground Source” or “Zero Sequence Source” are a misnomer, or more precisely a useful simplifying
abuse of language, that has been harmless until now.

To see zero sequence, current the system must be grounded, this requires connected sources that
allow for both negative sequence and zero sequence paths. The zero sequence path is provided by
transformer that have the required winding configuration. The negative sequence path is provided by
the rotating generators on the system.

This has been true until the emergences of Inverter Based Resources (IBR).
IBR can be programmed to produce



4. So what about “ground source” or “sources of zero sequence currents”? “Ground Source” Transformers

)

The association of a zig-zig with a ground
connection
Or
The association of a Delta connection with
another grounded winding connection

Creates the path for the 310 currents .
There is actually no source, only a path



3. Refresher on sequence Networks.
The Purpose of sequence networks

Sequence networks’ purpose is to calculate the fault current for asymmetrical faults:
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5. Example of a grounded system “Phase to ground” Fault example
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5. Example of a grounded system “Phase to ground” Fault example
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5. Example of a grounded system “Phase to ground” Fault example

Changing the transformer with a “ground ' 7 INAL
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6. Example of a IBR connected to a ground system.

Typical Inverter Base Resources are built to
only positive sequence current.

The equivalent negative and positive
sequence network is open.

If a “ground source” transformer was used,
then there is still an open part of the circuit
on the negative sequence network.
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6. Example of a IBR connected to a ground system.
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6. Example of a IBR connected to a ground system.

Inverters can be programmed to be sources
on the negative and zero sequence network.

Since a ground transformer typically provide
the closed path on transmission systems,
only the negative sequence source the
necessary to allow currents to flow.

If the IBR is the only source feeding the
fault, then the source will need to be of
equal magnitude and angle.

Since most of the system impedance is
reactive, the angle in reference to the
voltages will be close to 90 degrees.
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6. Example of a IBR connected to a ground system.

When a phase to ground fault start the
source voltage theorically will appear as
the negative sequence voltage at the
generator terminal. That is because no
fault current is flowing.

V+ = - V-
at the start of the fault

|




6. Example of a IBR connected to a ground system.

While connected to the grid, the mix of
generation offers a path for negative
sequence current produced by the IBR.
This means that the IBR can “push” the
negative sequence at any angle. That is
because the equivalent system generators
will close the path of the negative
seguence network.

If the angle is not reactive (or close), the
directional elements of protective relays
will mis-operate. Refer to Sandia Report.
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7. What could become problematic if the IBR do not allow for negative sequence.

Medium and low voltage equipment are often used in small geographic network where it is easy to survey to
find an insulation failure. Where the source impedance is small (fault energy is large), creating an
ungrounded system is preferred as it reduces the likelihood of damage.

This means that these equipment are likely to be submitted to larger voltages due to the large zero
sequence voltage under ground fault conditions.

For this reason, IEEE recommends that equipment below 100kV be capable of withstanding proportionally
larger voltage in reference to its rated voltages. Similarly switching ungrounded sources is only tested on
breaker rated below 100kV.

If IBR are not programmed to produce negative sequence, progressively the transmission system will
become ungrounded. The operation will be taken in a mode that it was not designed for.

This will likely lead to accelerated equipment aging and failure on the entire transmission system.



7. What could become problematic if the IBR do not allow for negative sequence.

Distribution system will see a similar problem as the typical end customers equipment (PCs, TV,
appliances,...) are not designed to withstand more than 20% overvoltage for only a very short time. (less
than a cycle).

An ungrounded system would produce a 73% rise on the un-faulted phases. These equipment's will also
experience accelerated failure.

A survey of equipment cost shows that Increasing the insulation and voltage operation capability increases
the cost of the equipment by 15%.

Total US Transmission assets is estimated at $1.5T. It is estimated that to rebuild from the ground up the cost
is S5T.

If the transmission system became ungrounded, we can deduce that the cost impact would be of the order
of 15% of $5T= $750B

It seems the cost of designing Inverters that produce adequate output of negative sequence should be far
less.



7. What could become problematic if the IBR do not allow for negative sequence or do not allow
for enough of it, or do not control it adequately.

Because no current will be produced, we will no longer be able to locate the fault, on the transmission as
well as the distribution systems. The system insulation and voltage breaking capability will need to be raised.

Though it will be decades until a 100% IBR system would exist, it is very likely that in the near future islands
on 100% IBRs will be created.

For this reason, the negative sequence source problem must be addressed TODAY.



8. Model Simulations
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8. Model Simulations
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8. Model Simulations

The system shunt capacitance can provide the negative sequence path
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8. Model Simulations
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PSCAD Simulation
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Inverter Output During Line-to-Ground Fault
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Inverter Output During Line-to-Line Fault
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Inverter Output During L-g & L-L Faults
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Inverter Output During L-L Fault

Kiloamps
-3

Kilavalts
C

Orange Cursor Time
03/16/21 02:42:03.644 PM

= |Phasor Calculations

Color Name Mag Angle

= a kV_N_APhasor 6.7BE19kV17.79" |
== b kY N APhasor 581575 ki -149.78°
Orange Cursor Time
03/16/21 02:42:03.644 PM
+ Phasor Calculations
Color Name Mag Angle

= APHASOR 650482 -8346%
= B PHASOR 980875 11387

650 ms

Orange Cursor Time

03/16/21 02:42:03.644 PM

=« |Phasor Calculations

Color Name Mag NI!C

V2RV N_APhasor 257923 kv 441"
-2 PHASOR 361896 -17.41°

- Chart Options

Cursor Selection

I Orange Cursor
Show Magnitudes

™ NEGSEQANGLE |

g T T
Bt TN
i »
o\
VI NA
]
-0
IZPHASOR |
T/
5 /
« > 4
/- X
>




Inverter Output During L-g Faults
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Conclusion

1. The grid needs to remain grounded

2. Inverter based resources could pose a challenge to
grounding

3. There is still some work to do in the inverters to
ensure system grounding

4. When a portion of the grid has high IBR
penetration, it is important to study this in a
transient modeling software
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