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Introduction

• Inverter connected renewable and distributed energy resources are 
being installed worldwide
– Windfarms, PV (solar) systems

• Existing transmission networks are being upgraded with the addition 
of various compensating devices
– SVCs, series capacitors, shunt compensators

• Inverters and networks could  interact with each other to generate 
low frequency oscillations 
– Sub Synchronous Control Interactions (SSCI)
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Sub-Synchronous Control Interactions (SSCI)

• Example of SSCI event captured in the field 
• Type-3 wind farm & series compensated system 

– Xcel Energy, USA.
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• Understanding the sub-harmonic (low frequency) spectrum

• Conventional relays do not detect sub-harmonic conditions
– Equipment damages are possible with some safety concerns 

Sub-Synchronous Control Interactions (SSCI)
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8-13 Hz
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Requirement of System Studies 

• It is essential to perform system studies to understand the 
potential risks associated with SSCI conditions
– This work is part of the system integration study (series capacitors, 

wind systems, etc.)

• Network topology and type of inverters  determines requirement 
for a detailed system study
– Example: a system may face SSCI if a nearby series capacitor 

makes radial or near radial connection with the type-3 windfarm 
during outage conditions 
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Methods Used in System Studies 

• Methodologies
– Harmonic impedance scanning
– Dynamic frequency scanning
– Time domain simulation

• Note: determined not by the system protection study but by the 
system integration study.
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Harmonic Impedance Scanning

• Harmonic impedance scans (passive) are used to derive network 
impedance as a function of frequency

• It is useful to identify the electrical sub-synchronous frequency of 
resonance conditions

• The scan can be performed using electromagnetic transient 
(EMT) simulation software tools such as PSCAD, EMTP, etc.
– Effect of controls are ignored
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Harmonic Impedance Scanning

• Conductance 
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Dynamic Frequency Scanning

• This option is used to calculate the damping provided by a power 
electronic converter at sub-synchronous frequencies

• This technique injects relatively ‘low’ magnitude harmonic current 
into the inverter model (EMT power system simulation, PSCAD or 
EMTP) over the sub-synchronous frequency range

• Generally, this step involves modulating the terminal voltage of 
the turbine with a harmonic voltage waveform 
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Dynamic Frequency Scanning

• Scanning  setup

• Dynamic impedance 

• Dynamic response plot 
– negative resistance 

• The results of this study are compared with the network-side harmonic 
impedance scan
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Time Domain Simulation

• Once the worst contingencies are identified using the previous 
methods, time-domain simulations are performed for the selected 
network configurations.

• Electromagnetic transient type (PSCAD, EMTP) simulation programs 
should be used for these types of analysis
– Output
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System Study Results

• If there is no risk of SSCI, no action is required (best case 
scenario) 

• If there is a risk of SSCI, mitigation solutions are considered.
• Controller tuning 
• Topology based mitigation
• Protection solution 

– System study provides
• SSCI frequencies (individual or a range)
• SSCI magnitudes
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Protection Solutions (examples)

• By-passing series capacitor

• Tripping windfarm

Protection Challenges and Practices for Interconnecting Inverter Based Resources to Utility Transmission 
System, IEEE PSRCC,   Report of Working Group C32 of the System Protection Subcommittee, 2020
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Understanding of Sub-Harmonics & Limitations 

• Protection Relaying point of view
– Nature of sub-harmonics
– Effect of normal faults
– Effect of non-faulty transients
– Sources of errors
– Limitations in modelling and simulation

• networks with multiple inverters
• actual system vs simulation model
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SSCI Relay Features

• Operates based on voltage or current measurements

• Frequency setting range (5-55 Hz)
– Operates based on recursive DFT
– Combination of 1Hz and 5Hz

• Various measurement methods
– Nominal sub-harmonic measurements
– Sub-harmonics as a percentage of fundamental component
– Cumulative sub-harmonics as a percentage of fundamental component
– Detection of momentary picking up of sub-harmonics
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SSCI Relay Basic Algorithm
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input

5-55Hz We will cover this in next few slides

Common for other relays Common for other relays



Sub-Harmonic Detection Logic Diagram
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Various measurement methods
Detection of momentary picking up of SH transients



Protection Philosophy

• Formulation of inverse characteristics
– Set to operate based on nominal and total sub-harmonics

– Provides enhanced operation 
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Application Case-1

• SSCI Modes Available: ~22 Hz and ~47 Hz with > 5% Mag SSCI 
(based on system studies)

• Current detection (4 stages)
– 20-50 Hz, 5%, 0.5 sec
– 20-50 Hz, 10%, 0.4 sec
– 20-50 Hz, 20%, 0.3 sec
– 20-50 Hz, 40%, 0.2 sec

• Voltage detection (2 stages)
– 20-50 Hz, 5%, 1.0 sec
– 20-50 Hz, 10%, 0.5 sec
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Application Case-2

• When no SSCI study has been done, generic settings can be used
• Current detection (4 stages)

– 5-55 Hz, 5%, 0.5 sec
– 5-55 Hz, 10%, 0.4 sec
– 5-55 Hz, 20%, 0.3 sec
– 5-55 Hz, 40%, 0.2 sec

• Voltage detection (2 stages)
– 5-55 Hz, 5%, 1.0 sec
– 5-55 Hz, 10%, 0.5 sec
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Example: Application – RTDS Testing

System-X
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Example: Application – RTDS Testing
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Example: Application – RTDS Testing
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Relay Testing Using Field Reported Event (Texas)

• Current detector (4 Stages)
– 5-55 Hz, 5%, 0.5 sec
– 5-55 Hz, 10%, 0.4 sec
– 5-55 Hz, 20%, 0.3 sec
– 5-55 Hz, 40%, 0.2 sec

• Voltage detector (2 Stages)
– 5-55 Hz, 5%, 1.0 sec
– 5-55 Hz, 10%, 0.5 sec

Note: Standard settings were 

assumed
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Event with Multiple Frequencies 
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Detection of Momentary Picking up of Sub-harmonics
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Summary 

• We have discussed:

– Introduction to SSCI conditions

– Study methods used to identify SSCI conditions

– Applicability of a numerical sub-harmonic protection relay to provide protection 
against SSCI conditions

– A protection setting structure that provides the flexibility for users to select basic 
settings, even when no information is available from system studies

– Applicability of the proposed setting structure using field-recorded waveforms 
obtained from a digital fault recorder
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FAQ

Question 1: 
Are there actual installations of SSCI protection relays/schemes?
• Yes, there are several installations covering inverter connected windfarms/solar.

Question 2: 
Is the SSCI protection the first level of mitigation?
• It depends on the application/utility.  

• Typically, we have seen that the control type mitigation was applied before the 

protection.
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FAQ cont..

Question 3: 
What is the impact on other protection elements?
• SSCI is a low frequency phenomena. Low frequencies may affect the operation of 

standard protection relays.

Question 4: 
Can invertor-connected generation have negative effects on standard protection?
• Yes. There are several other issues such as lack of sufficient fault currents during 

faults. Please refer the IEEE PSRCC/ IEEE PES working group activities for more 

information.
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Thank you!

• Email: nperera@erlphase.com
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