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GIC mechanism
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HEMP causes similar currents to GIC
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Simulation scenarios

Model detalils

Baylor lab transformer test bench




Protective relay details

Two microprocessor-
based transformer
differential relays that
had different
manufacture dates

Relay 1 used
harmonic blocking
and harmonic
restraint for inrush
restraint
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Relay 2 had same
capabilities as
Relay 1 but with
enhanced inrush
restraint features

Waveshape blocking during GIC saturation




Waveshape blocking during GIC saturation
and internal fault

Differential settings

Setting Value

87U pickup 8 per unit
87R pickup 0.5 per unit
87R primary slope 20%

87R high-security slope 37.5%

Second-harmonic blocking pickup 15%

Fourth-harmonic blocking pickup 15%




Results
Internal phase-to-ground fault on primary winding

= GIC level varied from
Oto 225 A

» Ry values of 50, 100,
200, 300, 400, and
500 Q

= Very little impact to
sensitivity for test
cases for Relay 2

Results
Internal phase-to-ground fault on secondary winding

= GIC level varied from
Oto225 A

» Ry values of 50, 100,
125, and 150 Q

= Some impact to
sensitivity for both
relays for higher
GIC levels




Results
Internal phase-to-phase fault on primary winding

= GIC level varied
from 0 to 225 A

» R values of 50, 300,
400, and 500 Q

= No impact to
sensitivity for test
cases for Relay 2

Results
Internal phase-to-phase fault on secondary winding

= GIC level varied
from 0 to 225 A

» Ry values of 50,
100, 200, and 300 Q

= Some impact to
sensitivity for both
relays for higher
GIC levels




Example case
Harmonic blocking
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Example case
Harmonic restraint
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Example case
Waveshape recognition

Conclusion

= Additional model refinement needed to generalize model for
power transformers

= All methods of inrush restraint remained secure during
half-cycle GIC-induced saturation

= Only cross-harmonic blocking led to dependability problems
during high levels of GIC
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Conclusion

Relay 1 Relay 2
= Included harmonic blocking and = Included traditional methods
harmonic restraint and enhanced waveshape

- Lost dependability and recognition logic
sensitivity as level of = No significant change in
GIC increased dependability or sensitivity as
level of GIC increased

Conclusion

= Other protective elements and relays are available that
could potentially trip for a fault where traditional schemes
fail to operate, such as REF and sudden pressure relays

= Additional testing and simulation are needed to evaluate
impact of GIC on other elements such as REF
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Questions?

12




