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Overview

▪ Background
▪ Model and simulations
▪ Protective relay details
▪ Test results
▪ Conclusion
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GIC mechanism
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Simulation scenarios

Model details

Baylor lab transformer test bench
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Protective relay details

Two microprocessor-
based transformer 
differential relays that 
had different 
manufacture dates

Relay 1 used 
harmonic blocking 
and harmonic 
restraint for inrush 
restraint

Relay 2 had same 
capabilities as 
Relay 1 but with 
enhanced inrush 
restraint features

Waveshape blocking during GIC saturation
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Waveshape blocking during GIC saturation 
and internal fault

Differential settings

Setting Value

87U pickup 8 per unit

87R pickup 0.5 per unit

87R primary slope 20%

87R high-security slope 37.5%

Second-harmonic blocking pickup 15%

Fourth-harmonic blocking pickup 15%
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Results
Internal phase-to-ground fault on primary winding

▪ GIC level varied from 
0 to 225 A

▪ RF values of 50, 100, 
200, 300, 400, and 
500 Ω

▪ Very little impact to 
sensitivity for test 
cases for Relay 2

Results
Internal phase-to-ground fault on secondary winding

▪ GIC level varied from 
0 to 225 A

▪ RF values of 50, 100, 
125, and 150 Ω

▪ Some impact to 
sensitivity for both 
relays for higher 
GIC levels



7

Results
Internal phase-to-phase fault on primary winding

▪ GIC level varied 
from 0 to 225 A

▪ RF values of 50, 300, 
400, and 500 Ω

▪ No impact to 
sensitivity for test 
cases for Relay 2

Results
Internal phase-to-phase fault on secondary winding

▪ GIC level varied 
from 0 to 225 A

▪ RF values of 50, 
100, 200, and 300 Ω

▪ Some impact to 
sensitivity for both 
relays for higher 
GIC levels
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Example case
Harmonic blocking
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Example case
Harmonic restraint
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Example case
Harmonic restraint

▪ B-Phase tripped
▪ Enabling harmonic 

restraint allowed tripping
▪ Harmonic restraint did 

not pick up for all test 
scenarios
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Example case
Waveshape recognition

Conclusion

▪ Additional model refinement needed to generalize model for 
power transformers

▪ All methods of inrush restraint remained secure during 
half-cycle GIC-induced saturation

▪ Only cross-harmonic blocking led to dependability problems 
during high levels of GIC
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Conclusion

Relay 1

▪ Included harmonic blocking and 
harmonic restraint 

▪ Lost dependability and 
sensitivity as level of 
GIC increased

Relay 2

▪ Included traditional methods 
and enhanced waveshape 
recognition logic 

▪ No significant change in 
dependability or sensitivity as 
level of GIC increased

Conclusion

▪ Other protective elements and relays are available that 
could potentially trip for a fault where traditional schemes 
fail to operate, such as REF and sudden pressure relays

▪ Additional testing and simulation are needed to evaluate 
impact of GIC on other elements such as REF
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Questions?


