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Wide Area Coordination

“Wide-area coordination (WAC) analysis is the evaluation 
of protective device selectivity and sensitivity at a system 
level (multiple layers of adjacent terminals) with a goal of 
improving system reliability” [Barman 2014].

• Wide-area coordination is a labor intensive, difficult 
process.

• Automated tools to verify coordination exist, but less 
work has been done to automate development of 
coordinated settings to avoid (or fix) reported 
violations.

• PRC-027-1 is here! WAC must be performed with 
increasing frequency.
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Wide Area Coordination

Specific Challenges

• Directional Time Overcurrent Relays – three 
parameters (pickup, time dial, curve type) collectively 
define complex response of the element. Very difficult 
in tightly coupled systems. [Thomas et al, 2019].

• Multi-element coordination – not just OC/OC and 
DS/DS pairs, but OC/DS, etc. Former may be too 
restrictive (or hide violations).

• How to handle unresolvable miscoordinations.
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Our Approach

Use an auto-tuner which can quickly create coordinated 
relay settings based on guidance from an engineer. 

Leverage our previous work for the automation workflow.

 Input collection (e.g., backup relay pairs, fault currents) 
from short circuit program [Boecker, Corpuz, Perez, 
Hankins 2017].

 Automated coordination verification [C. Thomas, Perez, 
Hankins, Tribur 2018].

 Directional Time Overcurrent Relay auto-tuning (pickups 
and time dials) [N. Thomas, Hankins, Perez 2019].

In this work, we address more real-world concerns to move 
towards a viable, general-purpose tool.

 Support for more timing constraints, OC Curve selection, 
OC / DS coordination, contingency support, and selective 
coordination relaxation when full coordination is not 
possible.
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Previous Work in Auto-tuning

Academic literature is rich in ideas and tracks trends in 
computer science, machine learning, and artificial 
intelligence.

• Two surveys
[Moirangthem 2011] & [Birla 2005]

• Optimization Theory
[Urdaneta 1988], [Birla 2006], [Damchi 2018]

• Many other approaches:
• Genetic algorithms [Ravazi 2008]
• Reinforcement learning [Kilickiran 2018]
• Graph theory [Madani 1998]
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Auto-Tuning Coordination Workflow

• Primary areas of new work are richer problem definition and extension of the settings generator to support 
definition additions.

• Tighter integration with fault simulation software. The move from scripting to the linkable library means the 
settings generator can collaborate better to verify partial solutions during the solve phase.
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Workflow Implementation Overview

• Input Collector based on [Boecker, Corpuz, Perez, Hankins 2017]. 

• Settings Generator solver based on optimization theory. 
• Initial formulation is a non linear problem as in [Urdaneta 1988]. 
• Transformed to Mixed Integer Linear Programming (MILP) formulation of problem [Damchi 2018].
• Expressed as large collection of constraints to satisfy such as:
OpTime(BackupRlyCfgi, Contj) - OpTime(PrimaryRlyCfgk, Contj) > 1/3 second

• Modern C++20 codebase.  Functional, composable design. 

• Coordination Verifier based on [Thomas, Perez, Hankins, Tribur 2018].
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Experimental Setup

• ASPEN OneLiner V14.8, latest OlxAPI programming interface.

• Quad core Intel Core i7-8565U and containing 16GB of RAM (laptop).

• All relays tuned are ground relays (can handle phase too).

• Single line to ground faults used in fault studies.

• Standard fault regime includes close-in, close-in end-opened, line-end, remote bus, and intermediate faults 
at every 10% of the line.

• Coordination Time Interval (CTI) >= 0.33s / 20 cycles.

• Default is for autotuner to prefer solutions minimizing aggregate response time to close-in EO faults.

• Default pickup range is [1..16] (secondary) and time dials [0.5, 16].
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Expanding Constraint Support

 In prior work, CTI enforcement, required fault response, pickup / time dial ranges were only constraint placed 
on the solver.  Insufficient to implement common protection standards.

 Have integrated more customizable constraint support with small symbolic language and math operators as 
in [Corpuz 2017].  Expressions are automatically translated linear optimization formulation in the Settings 
Generator and passed to the settings solver.

 For this paper, explored lower and upper response time constraints faults (e.g., line-end faults).  

 Example:

 Text file based for now, graphical user interface would be ideal.
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Expanding Constraint Support

Experimental Setup
 9-bus / 18-relay system based on ASPEN OneLiner example.

 Baseline 1st experiment with no new additional constraints.

 Fixed U3 Curve.

 Converged to optimal result in 0.4 seconds.
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Expanding Constraint Support

Experimental Setup
 9-bus / 18-relay system based on ASPEN OneLiner example.

 2nd experiment, allowed line-end response: [0.5..1.25]sec. 

 Fixed U3 Curve.

 Surprisingly, optimal result achieved in 0.2 seconds (2x faster).

 Branch & bound algorithm aggressively prunes solution space.

 Takeaway - formulate problem as realistically bound as
possible, worry less about making it “too hard”.
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Expanding Tunable Parameter Support

Overcurrent curve parameter selection
 Changing the curve parameter provides more flexibility to resolve difficult coordination situations.

 Expressed in our framework as additional per relay parameter in constraint formulation.

 Support for IEEE and IEC standard curves as well as several vendor specific curves.  Engineer can define 
which curves the solver is allowed to consider (to match utility’s standard).

 Runtime costs – increased problem space. In theory could cause slowdowns. In practice, effect is minimal.

Other Tunable Parameter Improvement

 Selective CT Ratio tuning (e.g., when changes already scheduled to be made).

 Alternative Pickup set strategies based on fault currents + multiplier.
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Overcurrent curve parameter selection

Experimental Setup
 9 bus / 18 relay system based on ASPEN OneLiner example.

 1st experiment, U1-U5 curve, allowed line-end response: [0.5..1.25]sec. (composable)

 U4 chosen for all but one relay (R1, U3).

 Aggregate close-end EO response 2.99sec (27% reduction)
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Overcurrent curve parameter selection

Experimental Setup
 2st experiment, U1-U5 curve, allowed line-end response: [0.7..1.25]sec.

 If fixed U3 curve, no solution possible. Curve tuning critical. 

 Aggregate close-end EO response remains unchanged.
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Incorporation of Distance Elements

 Distance elements relatively easy to coordinate compared to OC elements.
DS/DS can be done in similar but simplified manner as OC/OC.

 For paper, first address heterogenous element coordination to find undiscovered challenges.

 Investigated OC/DS coordination, namely incorporated local Zone 1 response selectively when 
candidate OC settings at primary and backup will fail to coordinate (i.e., short source lines).  Often used as a 
compromise by protection engineers.

 Implementation – extract distance relay element response times from short circuit model and 
incorporate into problem formulation.
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Incorporation of Distance Elements

Experimental Setup
 Real world, interconnected power system in Texas.

 U1 to U5 curves considered, allowed line-end response: [0.25..1.25] sec. 

 Without Zone 1 response incorporated, system does not coordinate.

 With Zone 1 responses, optimal solution found in 3.45 seconds.
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Contingency Support

 Previous approach only considered normal conditions, not feasible for real-world use.

 Now implemented, expressed as additional constraints for each fault considered and each additional grid 
configuration.

 Uses topology analysis and fault simulation capabilities already developed [Corpuz 2017].

19



20

Contingency Support

Experimental Setup
 U1 to U5 curves considered

 allowed line-end response: [0.25..1.25] sec

 Zone 1 response considered.

 N-1 remote line contingencies.

 Exec time is 6 minutes (see paper for optimization strategies).
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When Full Coordination is not Possible.

Allowing minimal violations when coordination not possible.
 Previous approach detected when full coordination was not possible but returned no approximate / proposed 

solution.

 Now, if no feasible solution found, solver attempts to find a solution with number and size (almost valid CTIs)
that yields tuned settings.

 Reports the settings as well as the violations that were allowed to create them.
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Contingency Support

Experimental Setup
 U1 to U5 curves considered

 line-end response: [0.5..1.25] sec

 Zone 1 response not considered.

 2 line end time violations (worst off by 0.1241 seconds.

 5 CTI violations (worst off by 0.0663 seconds / 4 cycles).
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Minimizing Violations

 The ability to identify and minimize violations to find a 
near full coordination is an important breakthrough.

 The autotuner can now be incredibly useful in the cases 
that matter most (hardest).

 Future work – all violations are not equal.  
Allow prioritizing of some contingencies over others 
(N-0 -> N-1 -> N-2).

23



24

Future Work

• Still in prototype form. 
• Test and adapt to larger grids.
• Expand support for distance elements
• More critically evaluate against historical studies 
and refine implementation.

• Develop graphical user interface
• Ease specification of coordination specification.
• Visualization of candidate solutions.

• Model the execution time of the software and 
optimize.

• Employ larger scale parallelism (currently core 
multi-threading) to reduce compute + analyze 
loop.
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