Applicability of Synchrophasor Based Frequency Data for Protection and Control Applications

ERLPhase Power Technologies Ltd, Winnipeg, MB Canada
Nandaka Jayasekara, PhD, P.Eng.
Manitoba Hydro, Winnipeg, MB, Canada

72nd Annual Conference for Protective Relay Engineers
TEXAS A&M
Content

- Introduction to PMU
- Frequency Measurement
 - Standard definition
 - P/M filters
- Simulation Based Analysis
 - Standard steady state requirements
 - Standard dynamic requirements
 - NERC example
 - Abnormal frequency variations
- Considerations for IEC 61850 9-2 LE applications
- Conclusions
Definition of RMS

- **RMS Magnitude** and **Phase Angle** are calculated using DFT
- Assume a sinusoidal waveform (60/50Hz) with a peak value of X_m

Root Mean Square (RMS) = $X_m/\sqrt{2}$

Phase angle is calculated with respect to the DFT reference (i.e. sampling point on the waveform)
Definition of Phasor

- Phasor: **magnitude** and **phase angle** representation of a sinusoidal signal.
 - 69.1 kV, 25.1 deg.

Limitations in phase angle calculations

- Phase angle calculations are affected by:
 - Starting point of the sampling
 - Drift in internal clock
- This results in non-comparable/unusable calculations even for the same input signal measured using two devices.

Solution

- Sampling is done in a synchronized manor (1-PPS)
Definition of Synchrophasor (C37.118.1)

- ϕ is the offset from a cosine function at the nominal system frequency synchronized to UTC (1 PPS)
- A cosine has a maximum at $t = 0$, so the synchrophasor angle is 0 degrees when the maximum of $x(t)$ occurs at the UTC second rollover (1 PPS time signal), and -90 degrees when the positive zero crossing occurs at the UTC second rollover (sin waveform).
Global Time Reference

- GPS (Global Positioning System) synchronized with UTC (< 1 μS)
 - error of 1 μs corresponds to a synchrophasor phase error of **0.022 degrees for a 60 Hz system** and **0.018 degrees for a 50 Hz system**

- Most widely used is IRIG-B (Inter Range Instrumentation Group)
Importance of Global Reference

- Estimation of Power Transfer

\[P = \frac{V_s V_r}{X} \sin \delta \]
\[Q = \frac{V_r}{X} (V_s \cos \delta - V_r) \]
Importance of Global Reference…….

- Power system dynamic condition
Off-nominal Frequency Response

Figure 2—A sinusoid with a frequency $f > f_0$ is observed at instants that are T_0 seconds apart—the phase angle ϕ increases uniformly in relation to the frequency difference, $f - f_0$.

Figure 3—Sampling a power frequency sinusoid at off-nominal frequency.
Example
Frequency Calculations

- Signal

\[x(t) = X_m \cos [\psi(t)] \]

- Frequency

\[f(t) = \frac{1}{2\pi} \frac{d\psi(t)}{dt} \]

- Calculated based on phase angles estimated from DFT
 - \(~ 1\) cycle (assuming one cycle DFT)
Impact of P/M Class filters

- P-Class: 16 s/c sampling: ~2 cycle filter

- M-Class: 16 s/cy sampling: ~6 cycle filter
Impact of P/M filters

- Factors affecting the frequency
 - Sampling rate
 - Reporting rate
 - Type of filter (P/M)
 - Manufacture specific filters
Performance Evaluation

- RTDS Test Setup

- PMU Utility Software
PMU Configurations

PMU Definition

- Sample Rate: 60 frames/second
- Header Frame Text: Test
- PMU Standard: C37.118.1-2011 (M class)

Reporting Format:
- Phasor: Integer
- Analog: Integer
- Freq / ROC Freq: Integer

Phasor Options
- Analog Options
- Digital Options

Selected Channel	Full Scale	Unit	Active	Name to Report
Row 1 | Bay1:Va | 276 | kV | ✔ |
Row 2 | Bay1:Vb | 276 | kV | ✔ |
Row 3 | Bay1:Vc | 276 | kV | ✔ |
Row 4 | Bay1:ia | 250 | kA | ✔ |
Row 5 | Bay1:ib | 250 | kA | ✔ |
Row 6 | Bay1:lc | 250 | kA | ✔ |
Standard Test Results

Steady State Testing

<table>
<thead>
<tr>
<th>Influence quantity</th>
<th>Reference condition</th>
<th>Error requirements for compliance</th>
<th>P class</th>
<th>M class</th>
</tr>
</thead>
</table>
| Signal frequency | Frequency = \(f_0 \) (\(f_{\text{nominal}} \))
Phase angle constant | Range: \(f_0 \pm 2.0 \) Hz
Range: \(f_0 \pm 2.0 \) Hz for \(F_s \leq 10 \)
\(\pm F_s/5 \) for \(10 < F_s < 25 \)
\(\pm 5.0 \) Hz for \(F_s \geq 25 \) | | |

<table>
<thead>
<tr>
<th>Max.</th>
<th>Max.</th>
<th>Max.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Harmonic distortion (single harmonic)</th>
<th>Range: 1%. each harmonic up to 50th</th>
<th>Range: 10%. each harmonic up to 50th</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_s > 20)</td>
<td>(0.005) Hz 0.0008/0.001 0.4 Hz/s 0.1/0.002</td>
<td>(0.025) Hz 0.0005/0.007 None None</td>
</tr>
<tr>
<td>(F_s \leq 20)</td>
<td>(0.005) Hz - 0.4 Hz/s 0.005 Hz -</td>
<td>None None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Out-of-band interference</th>
<th>Range: No requirements</th>
<th>Range: Interfering signal 10% of signal magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>0.01 Hz</td>
<td>0.003</td>
<td>None</td>
</tr>
<tr>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
Standard Test Results

Dynamic Testing

<table>
<thead>
<tr>
<th>Reporting rate F_s Hz</th>
<th>F_r Hz</th>
<th>P class</th>
<th>M class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Max.</td>
<td>Max.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FE</td>
<td>RFE</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>Results</td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>req. 50/60Hz</td>
<td>50/60Hz</td>
<td>req. 50/60Hz</td>
</tr>
<tr>
<td>50</td>
<td>0.06</td>
<td>0.002</td>
<td>2.3</td>
</tr>
<tr>
<td>60</td>
<td>0.06</td>
<td>0.011</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Formulas

- $\min\left(\frac{F_s}{10.2}\right)$
- $0.03 \times F_r$
- $0.18 \times \pi \times F_r^2$
- $\min\left(\frac{F_s}{5.5}\right)$
- $0.06 \times F_r$
- $0.18 \times \pi \times F_r^2$
Example Event

- NERC Example

- This covers under dynamic test cases
Abnormal Frequency Variations

- 35 Hz to 85 Hz
Sources of Errors

- Primary Sensor bandwidth
 - CTs, PTs, CVTs
- Secondary sensor bandwidth
- PMU Time Synchronization
- Aging affects
- Temperature affects
- Digital resolution
 - ADC
Summary

- Applicability of a synchrophasor based frequency measurements is investigated using an industrial PMU.
 - IEEE C37.118 (2011)
- Testing was carried out using the IEEE standard test conditions including some conditions well beyond the standard frequency limits.
- Results obtained from this analysis showed the impact of the P and M class filtering methods.
- It is recommended to select the type of the filters (P/M) based on the application needs and adjust the application settings accordingly.
Thank you!