Application Considerations for Protecting Transformers With Dual Breaker Terminals

Shahab Uddin and Abu Bapary
American Electric Power

Michael Thompson, Ryan McDaniel, and Kunal Salunkhe
Schweitzer Engineering Laboratories, Inc.
Key Concepts of Paper

• Transformers in dual breaker buses
 ▪ Conflicting requirements
 ▪ Tradeoffs using an overall differential zone
• Scheme design choices

• Setting concepts
 ▪ CTR selection
 ▪ Key relay settings
• Solutions for legacy installations
Subzones of Dual Breaker Transformer Zone

87B Zone
- High through fault
- High speed
- Low sensitivity

87T Zone
- High sensitivity
- Relatively high speed
- Low through fault

Diagram showing the tripping zone.
Conflicting CTR Requirements

- High enough to not limit loadability
 Bus >> Transformer
- Low enough for sensitivity
 Transformer << Bus
- High enough to not saturate during through fault
 Bus >> Transformer
- Asymmetrical current drives saturation
- Core area drives volts / turn
- Square of turns drives performance
 - Fewer turns reduces voltage available
 - Fewer turns increases voltage required
Effect of MVA Setting on 87T
Three Options for System Design

- Two-relay scheme
- Three-relay scheme
- Four-relay scheme
• Benefits
 ▪ Low cost – only two relays
 ▪ Moderate setting complexity
 ▪ Least panel space and wiring

• Drawbacks
 ▪ Tradeoff
 – Sensitivity of 87T zone
 – Loadability and security of 87B zone
 ▪ Reduced speed of 87B zone
 ▪ Ambiguous fault location
Three-Relay Scheme

• Benefits
 ▪ Balance cost and performance
 ▪ High sensitivity and security
 ▪ Moderate panel space and wiring
 ▪ Accurate fault location

• Drawbacks
 ▪ Most complex settings
 ▪ Loss of performance if 87T or 87B out of service
Four-Relay Scheme

- **Benefits**
 - Best performance
 - Least complex settings

- **Drawbacks**
 - Most relays
 - Most panel space
 - Most wiring
• Dual breaker terminals on both the high side and low side of the transformer
• Protection redundancy and hardware diversity
• Dual slope percent restraint for bus and transformer zones with unique settings for the manufacturers’ relays
AEP Standard

- High system reliability requires high-side bus restoration
- Guidance on through-path loadability and automatic restoration of a high-side bus
Summary of Settings Considerations

<table>
<thead>
<tr>
<th>Application With Restraint Type</th>
<th>Slope 1</th>
<th>Slope 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transformer Differential</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>35</td>
<td>75</td>
</tr>
<tr>
<td>Sum of magnitudes</td>
<td>22</td>
<td>48</td>
</tr>
<tr>
<td>Bus Differential</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>35</td>
<td>75</td>
</tr>
<tr>
<td>Sum of magnitudes</td>
<td>22</td>
<td>50</td>
</tr>
</tbody>
</table>
Legacy Applications
Compromises to Look For

• Inadequate security for through fault not limited by transformer impedance
• Inadequate bus loadability
• Inadequate transformer protection sensitivity
Possible Solutions
Partial Differential

- 87PD zone
- 50P and 87U considerations
 - Above inrush
 - Above BUS X fault
 - Above spurious differential current
 - Below internal bus fault
Possible Solutions

87B in Protection Logic

• Partial differential elements cannot be used

• Implement simple bus differential elements in protection logic
Summary

• Transformer and bus differential zones have inherently different performance and reliability requirements

• A single overall differential relay covering both zones can result in significant compromises

• Use of separate differential subzones is recommended

• A case study with detailed calculations helps solidify the concepts
Summary of Recommendations

• Evaluate if you have compromised protection
• Evaluate presented alternatives
• Use recommended guidelines to select CTRs
• Use base MVA for selecting tap factors
Questions