Performance Analysis of Distance Protection Using Different Impedance Calculation Methods

Mohit Sharma – Megger

Vijay Shanmugasundaram- Power Grid Engineering LLC

Overview

- Fundamentals of Distance Protection
- Testing Distance Elements
 - a. Constant Voltage Method
 - b. Constant Current Method
 - c. Constant Source Impedance Method
- Performance Analysis
 - a. Mho Characteristic
 - b. Quadrilateral Characteristic
- Conclusions

Fundamentals of Distance Protection

- Testing Distance Elements
 - a. Constant Voltage Method
 - b. Constant Current Method
 - c. Constant Source Impedance Method
- Performance Analysis
 - a. Mho Characteristic
 - b. Quadrilateral Characteristic
- Conclusions

What is 21?

Distance Relay Characteristics

Mho Circle

Quadrilateral

Dynamic Mho

Forward faults – Mho Expands Reverse faults – Mho Shrinks

- Fundamentals of Distance Protection
- Testing Distance Elements
 - a. Constant Voltage Method
 - b. Constant Current Method
 - c. Constant Source Impedance Method
- Performance Analysis
 - a. Mho Characteristic
 - b. Quadrilateral Characteristic
- Conclusions

Testing Distance Elements

• Steady State Testing

a) Constant Voltage Methodb) Constant Current Method

• Dynamic Testing

- a) Constant Source Impedance Method
- b) Advanced Simulation
- c) DFR playback
- d) COMTRADE playback

Constant Voltage Method

- Voltage remains constant but current is ramped up till the trip occurs
- Does not truly test the dynamic characteristic of a relay
- Good for medium and long lines
- Not good for short lines due to requirement of extremely high currents
- Assumes single source model

Constant Current Method

- Current remains constant but voltage is ramped down till the trip occurs
- Does not truly test the dynamic characteristic of a relay
- Good for short lines
- Not good for self-polarized mho circles
- Assumes single source model

Constant Source Impedance Method

- Steady state method changes source impedance offered to the relay at every point
- Accurate way of testing dynamic behavior of the relay characteristic
- Uses symmetrical component theory to calculate faulted voltages and currents

Constant Source Impedance Method

- After radius is computed, the total apparent reach and line angle can be derived which will take Zs into account
- With sequence networks, faulted voltages and currents can be computed

Calculated values are the values right on the edge

- Fundamentals of Distance Protection
- Testing Distance Elements
 - a. Constant Voltage Method
 - b. Constant Current Method
 - c. Constant Source Impedance Method
- Performance Analysis
 - a. Mho Characteristic
 - b. Quadrilateral Characteristic
- Conclusions

System Description- Mho Enabled

Assumptions

- Constant Voltage Method is tested at 33.5 V
- Constant Current Method is tested at 9.959 A
- Constant Source Impedance Method is tested at 0.2 x 3.77 = 0.754 Ω at 83.46 degrees
- Test points are at MTA, 30 degrees

Constant Voltage Method- Mho

• Zone-1 Pick Up is tested at MTA

Constant Voltage Method- Mho

Cursor	Color	Name	R	х
-	-	ZAB	1.64131 Ω	0.973934 Ω
-	-	ZAB	13.4264 Ω	-0.01709 Ω

• Zone-1 Pick Up is tested at 30 degrees

Constant Voltage Method - Results

Test Angle	Measured Faulted Voltage at Pick-Up (VAN)	Measured Faulted Current at Pick-Up (IAN)	Theoretical Impedance (Ω)	Calculated Impedance (Ω)	% Error
83.46 ⁰	33.5 V	5.269 A	3.2	3.18	0.625
30 ⁰	33.5 V	8.778 A	1.93	1.908	1.14

Constant Current Method- Mho

• Zone-1 Pick Up is tested at MTA

Constant Current Method- Mho

• Zone-1 Pick Up is tested at MTA

Constant Current Method- Mho

• Zone-1 Pick Up is tested at 30 degrees

Constant Current Method - Results

Test Angle	Measured Faulted Voltage at Pick-Up (VAN)	Measured Faulted Current at Pick-Up (IAN)	Theoretical Impedance (Ω)	Calculated Impedance (Ω)	% Error
83.46 ⁰	63.18 V	9.959 A	3.2	3.172	0.87
30 ⁰	37.84 V	9.959 A	1.93	1.9	1.14

Constant Source Impedance Method-Mho

Constant Source Impedance Method- Mho

• Zone-1 Pick Up is tested at 30 degrees

Constant Source Impedance Method - Results

Test Angle	Measured Faulted Voltage at Pick-Up (VAN)	Measured Faulted Current at Pick-Up (IAN)	Theoretical Impedance (Ω)	Calculated Impedance (Ω)	% Error
83.46 ⁰	60.76 V	20.723 A	3.2	3.182	0.56
30 ⁰	59.83 V	19.825 A	1.93	2.208	12.62

Performance of Mho

Testing Method	Expected Pickup		Actual Pickup	
	MTA	30°	MTA	30°
Constant Voltage	3.2	1.93	3.18	1.908
Constant Current	3.2	1.93	3.172	1.9
Constant Source	3.2	1.93	3.182	2.208

System Description- Quad Enabled

Constant Voltage Method- Quad

• Zone-1 Pick Up is tested at MTA and 15 degrees

Constant Voltage Method - Results

Test Angle	Measured Faulted Voltage at Pick-Up (VAN)	Measured Faulted Current at Pick-Up (IAN)	Theoretical Impedance (Ω)	Calculated Impedance (Ω)	% Error
83.46 ⁰	33.5 V	5.25 A	3.2	3.19	0.31
15 ⁰	33.5 V	1.404 A	12.36	11.93	3.48

Constant Current Method- Quad

• Zone-1 Pick Up is tested at MTA and 15 degrees

Constant Current Method - Results

Test Angle	Measured Faulted Voltage at Pick-Up (VAN)	Measured Faulted Current at Pick-Up (IAN)	Theoretical Impedance (Ω)	Calculated Impedance (Ω)	% Error
83.46 ⁰	63.54 V	9.959 A	3.2	3.19	0.31
15 ⁰	98.09 V	4.9 A	12.36	10.01	19.01

Constant Source Impedance Method- Quad

• Zone-1 Pick Up is tested at MTA and 15 degrees

Constant Source Impedance Method - Results

Test Angle	Measured Faulted Voltage at Pick-Up (VAN)	Measured Faulted Current at Pick-Up (IAN)	Theoretical Impedance (Ω)	Calculated Impedance (Ω)	% Error
83.46 ⁰	11.94 V	17.39 A	3.2	3.19	0.31
15 ⁰	46.3 V	4.58 A	12.36	12.03	2.67

Performance of Quad

Tosting Mothod	Expected Pickup		Actual Pickup	
	MTA	15°	MTA	15°
Constant Voltage	3.2	12.36	3.19	11.93
Constant Current	3.2	12.36	3.19	10.01
Constant Source	3.2	12.36	3.19	12.03

- Fundamentals of Distance Protection
- Testing Distance Elements
 - a. Constant Voltage Method
 - b. Constant Current Method
 - c. Constant Source Impedance Method
- Performance Analysis
 - a. Mho Characteristic
 - b. Quadrilateral Characteristic
- Conclusions

Conclusions

- The effect of dynamic behavior of mho circle can accurately be validated by constant source impedance model
- Impact of memory polarization on the characteristic can be better realized at fault angles far off from MTA
- If symmetrical components are used to calculate faulted voltages and currents, the directional units supervising the distance elements will be transparent to the testing procedure

Q&A

• Mohit Sharma

Applications Engineer

mohit.Sharma@megger.com

Power on

 Vijay Shanmugasundaram
Protection and Control Engineer III vijays@powergridmail.com

