Unrestrained Low-Impedance Bus Differential – Should I Use It?

Ernest Poggi – Xcel Energy, Colorado
Mohamed M. Omer – Xcel Energy, Colorado
Tom Ernst – GE Grid Solutions

2017 Texas A&M Protective Relay Conference
Agenda

• Introduction

• History of low impedance bus differential and the evolution of the unrestrained element

• Modern Unrestrained Low Impedance Bus Differential

• Case Study: Unexpected Operation of a 115 kV Unrestrained Bus Differential Element during an external Fault

• Conclusions
Introduction

• Restrained percent differential element – the cornerstone of low-impedance bus differential (LIBD) protection
• LIBD popular with modern microprocessor based relays
 • Offer advantages over microprocessor based high impedance BD
 • Typically faster
 • More functionality (multi-function)
 • Over-current
 • Directional control
 • Metering
 • Unrestrained (AKA: high-set or instantaneous) BD
Introduction

- History of BD and the evolution of modern unrestrained BD
 - Possibly came from transformer differential
- Case study of an actual unrestrained bus differential element mis-operation
 - Illustrates the application concerns
 - Security
 - Applicability of the element
 - Speed advantage may not justify risk
 - Cautions associated with using it
 - Manufacturer’s instruction manual may not provide complete advice
 - User must consider all possible causes of CT saturation
History of Low Impedance Bus Differential & Evolution of Unrestrained Element

- Earliest BD was electro-mechanical TOC
 - Low impedance
 - Unrestrained
 - Slow
 - Prone to false trips
 - CT errors
 - Drove development of CT standards
History of Low Impedance Bus Differential & Evolution of Unrestrained Element

- Electro-mechanical high impedance bus differential relay developed next
 - Utilizes a voltage coil to measure error voltage
 - Avoid circulating error currents in its operating winding
 - CT excitation characteristic provides “restraint”
 - Very successful
Electro-mechanical low impedance restrained BD developed
- Improve security during external faults
- Each winding current is passed through restraint coils
- Differential current is passed through an operate coil
- Trips when operate torque exceeded restraint torque
- No intentional delay
 - But operating time is highly variable with rest torque
 - Operating times from 0.07 – 0.7 seconds
 - No unrestrained direct tripping units
Several analog electronic high impedance BD relays offered
 • Some still available
 • Authors found only one restrained electronic BD
 • Medium impedance
 • No unrestrained unit
Modern microprocessor Multi-function low impedance BD relays
 • Over-current, metering, waveform & event capture
 • Unrestrained element shows up
 • Why?
 • Author’s believe it came from the restrained transformer differential
 • Required to trip during in-rush
 • No similar “hole” in tripping for BD
Unrestrained element
 • What problem are we trying to solve?
 • Speed
 • Microprocessor restrained BD is fast
 • Consistent operating time (12-20 mS)
 • Unrestrained element 2-4 mS faster
 • Not significant in most applications
 • Incur false trip risk during severe CT saturation
 • Good CTs can saturate under the right conditions
 • DC offset
 • Remnant flux
 • No way to make secure and keep speed advantage
Case Study

Unexpected Operation of a 115 kV Unrestrained Bus Differential Element during an external Fault

Location of first fault (B-G)

Location of second fault (B-C-G)

Second yard owned by another utility
Case Study

West bus primary low imp BD mis-operated for second fault
- Unrestrained element operated
- Restrained element did not operate
- Secondary high imp BD did not operate

All 4 B & C-phase CTs saturated (no waveform of sec 87B but..)

Bkr open during event
Case Study

Waveform traces clearly show saturation of 115 kV CTs as fault evolves from low-high side

Low side fault evolves to high side fault
Case Study

B-phase restrained element picks up (B87R PKP) but does not trip (B87R)

- Directional (B DIR) and saturation (B SAT) elements block

B-phase unrestrained operates on evolved fault
Case Study

Why did the CT saturation cause a false trip?
- Manufacturer’s instruction manual calcs were followed to calculate pickup of unrestrained element
 - Consider the ratio and class of CTs (1200/5, C800)
 - Considered affect of X/R ratio and available fault current
 - Yet saturation was worse than predicted
- Extensive testing of CTs and CT circuits
 - Everything tested OK
- Extensive relay testing
 - Owner injected 90 A and relay remained stable
 - Manufacturer repeated factory acceptance tests – OK
- Relay replaced “just in case”
Case Study

Why did the CT saturate?
• Culprit is believed to be remnant flux
 • In core due to first fault
 • Second fault saturated the CT
 • Can not change flux instantaneously
• No discussion of this in manufacturer’s manual
Case Study

Remedial actions taken
• Relay replaced
• Unrestrained element tripping disabled
 • No clear advantage to using it
 • No way to be absolutely sure of security

Original logic – Trip with overall function operation

Revised logic – Trip with restrained element operation only
Conclusions

• LIBD popular with modern microprocessor based relays
 • Offer advantages over microprocessor based high impedance BD
• Unrestrained BD can cause false trips if not properly applied
 • May not be possible to assure absolute security
 • No clear history of successful unrestrained BD prior to microprocessor relays
 • May have come from transformer differential
 • Case study of mis-operation supports risk assessment
 • Good CTs can still saturate unexpectedly
 • 2-4 mS speed increase may not justify risk
 • Following manufacturer instruction manual will not necessarily assure security
Thank You

Questions?