Utility Implements Communications-Assisted Special Protection and Control Schemes for Distribution Substations

Michael R. Duff
City of College Station

Payal Gupta, Dharmendra Prajapati, and Alex Langseth
Schweitzer Engineering Laboratories, Inc.
City of College Station (COCS)
College Station Utilities (CSU)

• Provides electric power to residential and commercial customers

• Is composed of
 ▪ ~20 miles of transmission lines
 ▪ ~458 miles of distribution lines
 ▪ 7 substations
Traditional 13.2 kV Distribution Substation

- Electromechanical relays
- No bus differential protection
- No breaker failure backup
- No automatic source transfer
- Four feeders per bus supplied from main breaker
- Challenge coordinating for simultaneous fault conditions
13.2 kV Distribution Substation for Special Protection and Control Scheme (SPCS)
Communications Link Supervision for High-Speed Data Bits

<table>
<thead>
<tr>
<th>IEDs</th>
<th>Status Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROK = 1</td>
<td>Communications channel good</td>
</tr>
<tr>
<td>ROK = 0</td>
<td>Communications channel bad</td>
</tr>
</tbody>
</table>

Inverse (NOT) of ROK is used to create digital alarm bit to alert operations of communications failure.
Communications Link Supervision in Logic Processors

<table>
<thead>
<tr>
<th>Logic Processors</th>
<th>Status Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM = 1</td>
<td>Communications channel good</td>
</tr>
<tr>
<td>COM = 0</td>
<td>Communications channel bad</td>
</tr>
</tbody>
</table>

Communications link supervision in logic processors only allows received data bits of good quality to be considered in algorithms.
Different Schemes Implemented

- **Fast bus tripping scheme** for significantly reduced bus fault-clearing time
- **Breaker failure protection scheme** for shorter breaker failure clearing time
- **Double-circuit feeder trip scheme** for faster clearing of simultaneous faults without causing substation outage, and **stall reclose logic** for system availability
- **Automatic source transfer scheme (ASTS)** for higher power system availability
SCPS Six Major Design Criteria

- Dependability
- Security
- Selectivity
- Resilience
- Speed
- Cost
Limitation of traditional bus protection philosophy

- Bus fault is cleared with time-delayed transformer backup protection
- Typical fault-clearing time is between 0.6 and 1.0 seconds

Solution

- Bus differential protection is fast and secure, but has added cost
- Fast bus tripping scheme is fast and cost-effective
Fast Bus Tripping Scheme
Fault on Bus 1
Fast Bus Tripping Scheme
Fault on F1 Feeder Circuit
Limitation of traditional breaker failure protection philosophy

- Fault is cleared with upstream inverse-time overcurrent protection
- Long fault-clearing times lead to equipment damage or reduced equipment lifespan

Solution

- Dedicated, fast breaker failure protection scheme using existing IEDs and communications backbone
- Low implementation cost with minimal wiring
Breaker Failure Protection Scheme
Fault on Bus 1
Double Circuit Feeder Trip Scheme and Stall Reclose Logic

Limitation of traditional system

- Simultaneous faults may cause coordination issues
- Main breaker 51 element may misoperate
- IED overcurrent pickup and time-dial settings must be adjusted (resulting in slower tripping)

Solution

- Double-circuit feeder trip scheme with low implementation cost
- Fast 51 element setting and improved service reliability
Double Circuit Feeder Trip Simultaneous Fault
Stall Reclose Logic

- Bus 1
 - M1
 - TIE
 - F1, F2, F3, F4
- Bus 2
 - M2
 - F5, F6, F7, F8

- Logic Processor T1
- Logic Processor T2
Limitation of traditional system

- Less power system availability with more disruption
- Long restoration times

Solution

- ASTS that automatically switches from primary source to alternate source
- Short restoration times to improve power system availability
ASTS Transformer Fault
Other Schemes

• Multiple SPCSs run in parallel and coordinate with each other as complete, integrated solution

• Other control logic is implemented to improve system availability and dependability
 ▪ Hot-line mode
 ▪ IED health alarm
Questions?