MICROPROCESSOR RELAY DIRECTIONAL CHANGE DURING CURRENT REVERSAL

MICHEAL DAVIS, JR, P.E.
CENTERPOINT ENERGY – HOUSTON, TEXAS
DISCLAIMER

This presentation is being provided for informational purposes only and does not purport to be comprehensive. Neither CenterPoint Energy, Inc., together with its subsidiaries and affiliates (the “Company”), nor its employees or representatives, make any representation or warranty (express or implied) relating to this information. By reviewing this presentation, you agree that the Company will not have any liability related to this information or any omissions or misstatements contained herein. You are encouraged to perform your own independent evaluation and analysis.
OVERVIEW OF EVENTS

• An SLG fault occurred on one transmission line of a parallel circuit
 ▪ Fault duration was 83.33 ms (5 cyc at 60 Hz).
• After one end cleared, one terminal of a parallel line operated.
 ▪ There was no fault on this parallel line.
 ▪ A reverse fault appeared to be forward
 ▪ Reverse fault current value was higher than the instantaneous overcurrent pickup value.
PROTECTION ELEMENTS

• The relays used communication schemes and non-communication tripping schemes

• The element that misoperated was a directional ground instantaneous overcurrent element
 ▪ This is a non-communication element meant to under-reach and trip with no intentional time delay
 ▪ 67G1 requires a high pickup value for the current and an established forward direction.
 ▪ The relay uses other elements to establish the direction
TOPOLOGY OF AREA – FAULT CURRENT DIRECTION

Relay with the unintended operated
CONTRIBUTING FACTORS

- This event involved a combination of contributing factors
 - Parallel Lines
 - Location and clearing of the fault
 - Relative strength of the fault current sources
 - Relay philosophy update was needed to account for manufacturer relay logic change
PARALLEL LINES

- There’s a current reversal on the parallel line after an end has cleared
- This is more likely to happen on parallel lines
LOCATION OF FAULT – FAULT CLEARING

• Since the fault was located near a terminal, that relay operated quickly to send a trip
• This led to one of the parallel lines being single-ended
SOURCE STRENGTH

• One end of the line had a much stronger source
• When the current was reversed due to the end opening, most of the fault contribution came from the stronger source
 ▪ This fault current went through the line where the relay misoperated
• This also led to the fault current being above the instantaneous ground overcurrent pickup
DIRECTIONALITY

• It was also realized that the relay settings didn’t account for a change in the directionality logic

• A directional element dropout timer led to the relay still seeing a forward fault when other directional elements dropped out

• This forward decision and the high reverse current led to the ground instantaneous overcurrent element operating
CHANGE IN RELAY LOGIC

- There was a dropout timer added to the relay’s directionality logic for ground directional elements.
RELAY OSCILLOGRAPHY - OVERVIEW
NOTES

• Initially, the torque control was set to 1 since there was no dropout time delay between F32QG and 32GF in the original logic
 ▪ 32GF used to establish forward direction for the ground instantaneous overcurrent tripping element
 ▪ An adjustment can be made by torque controlling with the F32QG element
• The forward ground instantaneous element picking up for a reverse fault would have been difficult to test since studies are usually done to test the forward pickup
LESSONS LEARNED

• Relays and their logic can be updated after the initial company practice is established

• As relays are updated, it’s important to track changes in relay logic and other updates

• There could be logic changes that would change current relaying philosophy
REFERENCES

QUESTIONS/ COMMENTS?