Protection Challenges for North America’s First Combined Cable / Overhead Double-Circuit 500 kV Transmission Line With Mutual Coupling

Denis Bucco, Curtis Sanden, Arturo Torres, and Edward Wong
Southern California Edison

Jordan Bell, Normann Fischer, and John Thompson
Schweitzer Engineering Laboratories, Inc.
Project Background

• New 75-mile 500 kV transmission line
• Single-circuit and double-circuit construction
• Protection package
 ▪ System A – Line current differential
 ▪ System B – Directional comparison blocking
 ▪ System C – Permissive overreaching transfer trip
Decreasing Land Availability…
From Overhead…

To Underground
Transition Towers

West

East
Cable Layout
Vaults and Terminations
Overall Line Composition
Line Section 1: 33 Miles

- Two conductors per phase
- Segmented ground wires
Line Section 2: 28 Miles

• Two conductors per phase
• Segmented ground wires
Line Section 3: 4 Miles

- Underground
- Two cables per phase
Line Section 4: 8 Miles

- Line 1: 500 kV line
- Line 2: Future 500 kV line
Impedance Comparison

Overhead

\[Z_1 = 0.05 + j0.58 = 0.58 \angle 85^\circ \text{ ohms/mile} \]
\[Z_0 = 0.44 + j2.13 = 2.17 \angle 78^\circ \text{ ohms/mile} \]

Underground

\[Z_1 = 0.02 + j0.31 = 0.31 \angle 86^\circ \text{ ohms/mile} \]
\[Z_0 = 0.20 + j0.13 = 0.24 \angle 33^\circ \text{ ohms/mile} \]
• Phase conductors induce voltage in ground wire
• Induced voltage leads to circulating current and losses
• Segmenting ground wires prevents circulating current
Line Impedance Calculation

\[\text{VA}_{\text{DROP}} = Z_{\text{AA}} \cdot I_A + Z_{\text{AB}} \cdot I_B + Z_{\text{AC}} \cdot I_C + \ldots \]
\[Z_{\text{AA}'} \cdot I_A' + Z_{\text{AB}'} \cdot I_B' + Z_{\text{AC}'} \cdot I_C' \]

Where:

- \(Z_{\text{AA}} \) = Self impedance
- \(Z_{\text{AB}} \) and \(Z_{\text{BC}} \) = Mutual impedance between phases
- \(Z_{\text{AA}'} \), \(Z_{\text{AB}'} \), and \(Z_{\text{AC}'} \) = Mutual impedance between the A-phase conductor Line 1 and \(\phi \)-phase conductor Line 2
Put in Matrix Form...

\[
\begin{pmatrix}
V_{A}\text{DROP} \\
V_{B}\text{DROP} \\
V_{C}\text{DROP} \\
V_{A}'\text{DROP} \\
V_{B}'\text{DROP} \\
V_{C}'\text{DROP}
\end{pmatrix}
=
\begin{pmatrix}
Z_{AA} & Z_{AB} & Z_{AC} & Z_{AA'} & Z_{AB'} & Z_{AC'} \\
Z_{BA} & Z_{BB} & Z_{BC} & Z_{BA'} & Z_{BB'} & Z_{BC'} \\
Z_{CA} & Z_{CB} & Z_{CC} & Z_{CA'} & Z_{CB'} & Z_{CC'} \\
Z_{A'A} & Z_{A'B} & Z_{A'C} & Z_{A'A'} & Z_{A'B'} & Z_{A'C'} \\
Z_{B'A} & Z_{B'B} & Z_{B'C} & Z_{B'A'} & Z_{B'B'} & Z_{B'C'} \\
Z_{C'A} & Z_{C'B} & Z_{C'C} & Z_{C'A'} & Z_{C'B'} & Z_{C'C'}
\end{pmatrix}
\begin{pmatrix}
IA \\
IB \\
IC \\
IA' \\
IB' \\
IC'
\end{pmatrix}
\]
…Then Sequence Domain

\[
(Z_{012}) = \begin{pmatrix}
Z_0 & w & x \\
Z_1 & y & Z_2 \\
Z_{0M} & w_m & x_m \\
w_m & Z_{1m} & y_m \\
x_m & y_m & Z_{2m}
\end{pmatrix}
\]
Parallel Line Apparent Impedance

\[Z_{S_TERM} = m \cdot Z_{L1} \left(1 - \frac{1}{2} m\right) \]

\[Z_{T_TERM} = \frac{1}{2} \cdot Z_{L1} \cdot (1 - m^2) \]
Sequence Impedance Through Energization

Positive-sequence

Zero-sequence
Impedance Calculation

Matrix calculation

\[Z_1 = 3.26 + j33.32 \ \Omega \]
\[Z_0 = 24.73 + j142.65 \ \Omega \]

Energization

\[Z_1 = 3.56 + j33.92 \ \Omega \]
\[Z_0 = 25.30 + j144.80 \ \Omega \]
Charging Current Leads to High Voltage

Voltage rise
Distributed capacitance charging current
Total charging current
Charging Current Leads to High Voltage

\[I_{1_CHRG} = j\omega C_1 \frac{V_{Ph-Ph}}{\sqrt{3}} \approx 2 \text{ amperes per mile overhead} \]
\[\approx 40 \text{ amperes per mile underground} \]
Protection System Validation

- Reduce short-circuit model to area of interest
- Maintain 500 kV system with boundary equivalents
- Build model in real-time digital simulator
- Choose realistic operating conditions
- Integrate physical relays with simulation
Protection System Validation

Test Plan

• Basic internal and external faults
• Line energization and load pickup
• Zone 1 margin
• High-impedance faults
• Batch tests
Batch Tests

- All internal and external fault locations (21 internal and 10 external)
- Ten fault types (AG, BG, CG, ABG, BCG, CAG, AB, BC, CA, and ABCG)
- Four fault inception angles (0, 30, 60, and 90 degrees)
- All load flow cases
Distance Element Performance

Measured Impedance (Ohms)

Theoretical Impedance (Ohms)

Vincent

Mira Loma

Measured Impedance (Ohms) vs. Theoretical Impedance (Ohms) graph.
Zone 1 Performance
Manufacturer A
How Did the Other Relay Do?

Manufacturer B
Manufacturer A Distance Performance

![Graph showing operating time (cycles) vs. fault location for Manufacturer A. The graph indicates a relatively stable performance across different fault locations, with a slight decrease towards the end.]
Manufacturer B Differential Performance

Operating Time (Cycles) vs. Fault Location

0% 20% 40% 60% 80% 100%

0.0 0.8 1.5 2.3 3.0

Fault Location
Impedance-Based Fault Locator
Manufacturer A

Fault Location Error (Miles)

Fault Location (Miles)
Traveling-Wave Fault Locator

- Explored to evaluate functionality on this composite line
- Simulated in non-real time
- Saved waveforms and replayed into the relays
- Evaluated the relay response
Traveling-Wave Reflections

Closed

LL_1, V_1
LL_2, V_2
LL_3, V_3
LL_4, V_4

Open

t_0
t_1
t_2
t_3
t_4

Diagram showing incident and reflected signals at different junctions and times.
Traveling-Wave Waveform

Current Magnitude (Amperes Secondary) vs. Time (Cycles)
Traveling-Wave Measurements

Traveling-Wave Magnitude (Amperes) vs. Time (Microseconds)

- t_0
- t_1
- t_2
- t_3
- t_4
Traveling-Wave Fault Locator Accuracy

Fault Locator Error (Miles) vs. Line Length (Miles)
Summary

• Transmission line incorporated underground cables
• Protection scheme needed reevaluation to include multiple line current differential relays
• Real-time digital simulation validated relay performance
Questions?