
 

 

1 

 

The Importance of Testing Smart Grid IEDs against Security Vulnerabilities 

 
PUBUDU EROSHAN WEERATHUNGA, ANCA CIORACA 

General Electric Grid Solutions - Canada 
Email: anca.cioraca@ge.com 

 

SUMMARY 
 

As the Smart Grid becomes highly interconnected, the power protection, control, and monitoring 

functions of the grid are increasingly relying on the communications infrastructure, which has 

seen rapid growth. At the same time concerns regarding cyber threats have attracted significant 

attention towards the security of power systems. A properly designed security attack against the 

power grid can cause catastrophic damages to equipment and create large scale power outages. 

The smart grid consists of critical IEDs, which are considered high priority targets for malicious 

security attacks. 

For this reason it is very important to design the IEDs from the beginning with cyber security in 

mind, starting with the selection of hardware and operating systems, so that all facets of security 

are addressed and the product is robust and can stand attacks. 

Fact is that the subject of cyber security is vast and it covers many aspects. 

This paper focuses mainly on one of these aspects, namely the aspect of IED firmware system 

testing from the security point of view. The paper discusses practical aspects of IED security 

testing, and introduces the reader to types of vulnerability exploitations on the IED 

communication stack and SCADA applications, practical aspects of security testing, the 

importance of early vulnerability detection and ways in which the security testing helps towards 

regulatory standards compliance, such as NERC-CIP.  
Finally, based on the results from the simulated attacks, the paper discusses the importance of 

good security practices in design and coding, so that the potential to introduce vulnerabilities is 

kept to a minimum.  

Designing with security in mind also includes good security practices, both in design and coding, 

and adequate policies for the software development process. Critical software development 

milestones must be established, such as design and test documentation review, code review, unit, 

integration and system testing. 
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1 INTRODUCTION 

The reliability and security of the power grid is essential. Every device in the grid must 

participate into making the security of the grid a reality.  

The modern IEDs must be themselves designed with cyber security features and functions which, 

on one side, will make them robust and resistant to cyberattacks and, on the other side, allow 

them to assist in secure centralized management and remedial action schemes in the grid. 

Cyber security is a very complex endeavor at any level, whether at the IED level or the whole 

OT and for that reason proper and detailed cyber security system testing of IED firmware is of 

utmost importance, as the system testing phase is the last point in the firmware development 

before a new release hits the market.  

In this paper we are going to present some practical aspects of IED security testing which we 

consider essential to a robust product. 

 

1.1 GENERAL 

Cyber security in substations and IEDs is still in an early age. While this is a subject that has 

been given a lot of attention and for a long time in the IT world, utility companies and industrial 

control systems have been slow in acknowledging its importance. This is partially because of the 

fact that traditionally these environments have been isolated, the communication being done over 

dedicated lines and proprietary protocols and providing some sort of security by isolation and 

obscurity. Utility companies for instance were used to believe (and many still are) that physical 

security is all that is needed. Hence they developed very strong policies for personnel access into 

the substation.  While these are very good measures, they are far from being enough in today’s 

world. There are a few reasons contributing to this situation: 

- Communications is not isolated anymore. IEDs may communicate with SCADA and control 

systems over an IP based network, even the Internet. 

- Communications protocols are not proprietary anymore. Many standards have been 

developed for IED protocol communications for the purpose of interoperability among 

various vendors. 

- There has been a marked increase in malicious attacks and the focus on unauthorized access 

has broadened from amateur attackers or disgruntled employees to deliberate criminal or 

terrorist activities aimed at impacting large groups and facilities.  

Only recently, due to NERC CIP regulations [1], cyber security in the electric grid starts to see 

more focus and vendors are asked to add more security protections in IEDs. 

 

This paper focuses on testing the security aspects of the IED. Also, based on the results from the 

simulated attacks, the paper discusses the importance of good security practices in design and 

coding as well as adequate policies for the software development process, so that the potential to 

introduce vulnerabilities is kept to a minimum. 
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2 IED SECURITY TESTING 

Testing the IED from the security perspective involves testing all the security features and 

mechanisms introduced by design in the IED, as well as testing for possible vulnerabilities, 

which are security weaknesses inadvertently introduced in software due to poor design and 

coding. 

 

Most IEDs are already implementing or in the process of implementing security mechanisms for 

supporting utility companies with NERC CIP compliance. The five security functions NERC 

CIP addresses and utility companies need to respond to are: Identify, Protect, Detect, Respond 

and Recover. To assist utility companies, IEDs may implement security features from all these 

aspects. For instance protection measures within the IED may include mechanisms for user 

authentication and accounting, user authorization based on need and encryption on 

communications protocols. Detection measures may include event logging of all security events 

with classification and timestamps. 

All these security mechanisms and features must be thoroughly tested, initially by developers 

and secondly by a separate testing group, who performs system tests for functionality, to ensure 

the end result is as described by the requirements in the functional specification. The test cases 

must be formulated to follow exactly these requirements. But this is not enough. 

The second part of security system testing must address vulnerabilities. 

Vulnerabilities may become a problem if they are uncovered and exploited by malicious 

organizations or individuals. Depending on the weakness, various penetration schemes may be 

implemented by attackers. So finding these weaknesses as early as possible and definitely before 

the software is released, is highly desirable. Of course, some of these weaknesses may have been 

already addressed in earlier stages of the software development, during the design or code 

review, as well as during the unit and integration testing. But the last chance is during the system 

testing and, since this testing is done by different people than the developers, from a different 

perspective and with different tools, chances are that additional vulnerabilities will be found at 

this point. 

3 VULNERABILITIES EXPLOITATION 

3.1 Vulnerabilities and Ways Hackers Exploit Them 

Vulnerabilities are weaknesses within the product that may be penetrated and exploited by an 

intruder. The penetration may be done either from outside or inside the Electronic Security 

Perimeter. Vulnerabilities may be present in the device due to intentionally left backdoors in the 

released software or unintentional weaknesses produced by bad design and coding practices. As 

an example of intentional vulnerability, a programmer might leave a backdoor open in the 

firmware for debug purpose, allowing outside intruder access to sensitive hardware, which an 

attacker may use to escalate user’s rights and access sensitive information. Examples of 

unintentional vulnerabilities can be manufacturing defects, programming errors or design flaws. 

Vulnerabilities are the weakest places in a device. Attackers can exploit these vulnerabilities to 

interrupt device communications or take the device down completely. Therefore, the impact of a 

security breach by exploiting an existing vulnerability is very high. Publicly known information-

security vulnerabilities and exposures are listed in the Common Vulnerabilities and Exposures 

(CVE) system. 

 

Table 1 lists some of the vulnerabilities sources and attack methods specific to smart grid IEDs.  
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Vulnerabilities Description 

Unchanged default 

passwords 

If default passwords are left unchanged, attackers may access 

the device using default login information available in user 

guides and manuals  

Bad design and coding 

practices  

 

 

There are many situations of varying complexity in this 

category. Among them we mention missing input validation, 

race conditions, buffer overflows and memory leaks.  

The attack type depends on the actual vulnerability.  

e.g: If the input validation is missing, an attacker may enter 

out of range values that may not be tolerated by the internal 

design, resulting in a device crash.    

Memory leaks may be exploited by consuming all memory 

and leaving the device unusable. 

In exploitations of buffer overflows, an attacker may write 

outside the allocated memory and crash the device. 

Test and debug features 

left in the production 

build 

This may allow an attacker to bypass normal login protection 

and get a higher level of rights to sabotage device 

functionality. Displaying debug information will reveal 

device functionality, allowing attackers to understand device 

internal behaviour. 

Unencrypted/ Unsigned 

sensitive information 

Network traffic is exposed to network sniffing, spoofing, 

replay attacks and Man-in-the -Middle attacks 

No limit conditions in 

incoming packet rates 

Packet storm attacks may cause Denial of Service by raising 

the network service CPU utilization and causing extreme 

network congestion. 

Weak password policies 

and no limit in number 

of authentication failed 

attempts 

Weak passwords may be exploited by password guessing, 

dictionary attacks and brute-force attacks.  

Vulnerabilities from 

third party software 

components and 

operating systems (the 

TCP/IP stack, security 

stack, operating system) 

Third party software may not have been thoroughly tested 

and may contain vulnerabilities. Once integrated in your 

device, those vulnerabilities will be transferred to your 

device. 

 Table 1 – Examples of vulnerabilities 

 

Attackers use vulnerabilities such as those described above to exploit the system.  

Table 2 divides the attacks based on how they are conducted, and presents possible counter 

measures, which, if implemented, may help defend them. 
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Attack Description  Countermeasures 

Passive Passive monitoring of communications 

sent over public media. 

Virtual private networks (VPN), 

cryptographically protected networks 

Active Attempts to circumvent or break security 

features, introduce malicious code (e.g. 

computer viruses), and subvert data or 

system integrity. 

Strong enclave boundary protection 

(e.g., firewalls and guards), access 

control based on authenticated 

identities (ID) for network 

management interactions, protected 

remote access, quality security 

administration, automated virus 

detection tools, auditing, and 

intrusion detection. 

Close-in Attacks in which an unauthorized 

individual gains close physical proximity 

to networks, systems, or facilities for the 

purpose of modifying, gathering, or 

denying access to information.  Gaining 

such proximity is accomplished through 

clandestine entry, open access, or both. 

Security awareness and training; 

Auditing and intrusion detection; 

Security policy and enforcement;  

Specialized access control to critical 

servers and network elements;  

Strong authentication and 

authorization. 

Insider Performed by a person who either is 

authorized to be within the physical 

boundaries of the information system or 

has direct access to the information 

security processing system 

Distribution Malicious modification of hardware or 

software between the time of its 

production by a developer and its 

installation, or when it is in transit from 

one site to another.   

Strong in-process configuration 

control for addressing vulnerability at 

the factory   

Use of controlled distribution or by 

signed software and access control 

that is verified at the final user site for 

addressing in transit vulnerabilities. 

 

3.2 Product Vulnerability Assessment   

Products may handle several communications protocols to support communications with 

other devices and services. Depending on their functionality, these protocols may be located 

at different layers of the OSI communications stack. Figure 1 shows some of the protocols 

and their positioning in the network stack. When we test these communications protocols for 

vulnerability assessments, testing has to be carried out at all layers of the network stack that 

the protocol touches. 
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 Figure 1: The OSI Stack and Associated Protocols 

 

For our vulnerability assessment we used tools similar with those an attacker might use to 

exploit product vulnerabilities. As an example, an attacker may use a port scanner to find an 

open TCP port and then execute a TCP SYN storm attack on that port. In this section, we 

describe some of the attacking tools that can be used to perform a product vulnerability 

assessment. 

 

Scans 

 

Scanning tools are one of first tools an attacker uses to gather information about a device in 

order to exploit it. Scanning tools, such as port scanning, probe a device to find open ports. 

There are several types of scanning methods that are named after the type of service or 

protocol they are scanning. Some scanning methods are TCP, UDP, SYN, ACK and FIN 

scanning. As the names imply TCP scans give a list of TCP ports open in a device, while 

UDP scans give a list of open UDP ports in a device.  

  

Storms 

 

As the name implies, storms are sending packets in a higher rate to a target device to execute 

a denial of service attack.  In general, the ability of a device to handle packets varies with 

packet rate. So it is important to execute each storm test case with different rate limits to 

determine the maximum threshold that the device can handle. 

 

Fuzzers  

 

Fuzz testing is injecting malformed, unexpected, or random data in the device and observing 

its behaviour under attack.  Fuzzer tests generate valid and invalid packets with randomized 

header values and lengths. In general, fuzzers are randomly choosing fields to fuzz in the 

protocol. Fuzzing can find a range of critical bugs including input validation failures, 

memory corruption and infinite loops. Some examples of fuzzing tests are Ethernet Fuzzers, 

IP Fuzzers and DNP3 Fuzzers. 
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Grammars 

  

Grammars are another type of fuzz testing. But the difference is that grammars don’t choose 

randomly the fields to fuzz. Grammars iterate over each field and choose fuzz values in a 

predetermined way, to better serve test coverage. Protocol grammars like DNP3 grammar, 

manipulate protocol data format at different layers of the protocol stack. Protocol grammars 

use valid protocol interactions at one layer to transport invalid data to a higher layer. The 

handler in each layer should validate its input and discard the data if it contains invalid or 

malformed fields. If the handler does not validate its input, these malformed fields might 

cause the device to crash or behave abnormally. Grammars are useful for in depth protocol 

handler analysis, because these handlers may be unprepared for invalid input. 

 

3.3 Attack Simulation Examples 

 

The test setup in Figure 2 was used for the attack simulations described below. The device under 

test had two redundant Ethernet ports, and we used 100 Mbps Ethernet links. We simulated 

attacks on the first port and we executed a DNP3 Class poll and “Select Before Operate” control, 

using DNP3 TCP/IP on the other port. In storm tests, we increment the storm rate (percentage of 

link utilization) and monitor ability to execute DNP3 TCP/IP poll and SBO controls. 

 

 
 Figure 2: Test setup for attack simulations 

 

The following IP addresses are used in the test setup, 

 Attack PC IP address : 10.100.3.100 

 Device IP address : 10.100.3.50 

3.3.1 ARP Tests 

 

Address Resolution Protocol (ARP) is a data link layer protocol used to map network layer 

protocol addresses to Ethernet MAC addresses.  In other words, this means mapping IP addresses 

to Ethernet MAC addresses.  It uses a memory table, called the ARP cache, to map network layer 

protocol addresses to data link layer hardware addresses.   

 

 

3.3.1.1 ARP Request Storm 

 



 

 

8 

 

ARP Request Storm sends identical, valid ARP requests to the device at a chosen packet rate. 

We changed the packet rate in each test and observed Device behaviour. 

As shown in Figure 3, the destination MAC address is set to the global broadcast MAC address 

(FF:FF:FF:FF:FF:FF) and the destination IP address is set to the device’s IP address 

(10.100.3.50). We send these valid ARP requests in higher packet rate to the target device and 

examine the device ability to maintain normal DNP3 polls and controls while dealing with the 

storm. 

 
Figure 3: ARP request storm 

 

3.3.1.2 ARP Host Reply Storm 

 

ARP Host Reply Storm sends identical, valid, but unsolicited ARP replies from the attack PC IP 

address, to the device at a chosen packet rate. We changed the storm rate in each test to analyse 

device behaviour. As shown in Figure 4, the attack PC (10.100.3.100) sends unsolicited ARP 

replies to the device in higher packet rate. Attack PC IP address should be in the device’s ARP 

cache already.  All ARP replies should process properly and this should not affect the ARP 

cache. We send these valid ARP replies in higher packet rate to the target device and examine 

the device ability to maintain normal DNP3 polls and controls while dealing with the storm. 

 

 
Figure 4: ARP host reply storm 

3.3.1.3 ARP Cache Saturation Storm 

 

ARP Cache Saturation Storm sends valid but unsolicited ARP replies from various IP addresses 

to the device at a specific packet rate in an attempt to saturate the ARP cache. As shown in 

Figure 5, we send ARP replies with different IP addresses and MAC addresses. We examine the 

ARP cache of the device, while the device is under attack. Then we increase the storm rate and 

the time duration of the test to saturate the ARP cache. 
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Figure 4: ARP cache saturation 

3.3.1.4 ARP Grammar 

 

ARP Grammar sends ARP request packets with valid and invalid header values.  

As shown in Figure 5, ARP header fields are manipulated by the grammar, resulting in both valid 

and invalid values. The following ARP header fields have been manipulated; Hardware Type, 

Protocol Type, Hardware Size, Protocol Size, Operation, Sender MAC Address, Sender Protocol 

Address, Target MAC Address, and Target Protocol Address. 

 

 
Figure 5: ARP grammar 

3.3.2 IP tests 

Internet Protocol (IP) is located at the network layer of the communication stack. IP packets are 

used by many upper layer protocols in their network layer. 

3.3.2.1 IP Unicast Storm 

IP Unicast Storm sends identical, valid IP packets to the device at a specific packet rate. Each 

packet contains a null payload. As shown in Figure 6, the source IP address is set to the attack 

PC IP address and the destination IP address is set to the device IP address. 

 

 
Figure 6: IP unicast storm 
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3.3.2.2 IP Broadcast Storm  

IP Broadcast Storm sends identical, valid IP packets and broadcasts them over the Ethernet link 

at a specific packet rate. Each packet contains a null payload. As shown in Figure 7, the source 

IP address is set to the Attack PC IP (10.100.3.100) address and the destination IP address is set 

to a broadcast IP address (10.100.3.255). 

 

 
Figure 7: IP broadcast storm 

3.3.2.3 IP Fragmented Storm 

 

When an IP packet is larger than the Maximum Transmission Unit (MTU) of the network it is 

using, the packet has to be broken into smaller blocks of data (fragmentation) for transmission. 

In the receiver, these packets are reassembled to the original packet prior to further processing. 

There fragments may arrive out of order, therefore the receiver keeps received fragments in 

memory until it receives the final fragment. IP Fragmented Storm sends valid, fragmented IP 

packets and sends them to the device at a specific packet rate. Also in this test, we didn’t send 

the final fragment packet, by forcing receiving device to keep the incomplete packets in memory. 

Device should discard incomplete fragmented packets from memory to prevent memory and 

resource exhaustion.  

 

 
Figure 8: IP fragmented storm 

 

3.3.3 ICMP storm 

 

ICMP Storm generates ICMP packets with different type/code combinations, both valid and 

invalid, and sends them to the device at a specific packet rate. 
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Figure 9: ICMP storm 

 

3.3.4 TCP tests 

 

Transmission Control Protocol (TCP) is located at Transport layer. It provides reliable, ordered, 

and error-checked delivery of a packet stream. Critical application layers protocols are rely on 

TCP implementation. These TCP tests are trying to exploit vulnerabilities in TCP.  

3.3.4.1 TCP/IP Land attack 

 

LAND attack is a well-known protocol attack that can cause a device to continuously reply to 

itself.  As shown in Figure 10, we generated TCP packets with the same address for the source 

and destination IP address (10.100.3.50), and the same port for the source and destination TCP 

port (port 22). 

 

 
Figure 10: TCP/IP Land attack 

 

3.3.4.2 TCP SYN Storm 

 

TCP SYN Storm generates valid SYN packets and sends them to the device at a varying packet 

rate to examine the device’s ability to maintain normal behaviour. We didn’t send any SYN 

ACK packets. Therefore, TCP connections are not established. In these attack packets, we set the 

source IP address to an unused IP address and the destination IP address is set to the device IP 

address.  
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Figure 11: TCP SYN storm 

 

During the TCP SYN storm, the DNP3 slave stops responding to the DNP3 master requests. 

When the device is under attack, the device should reject unnecessary TCP SYN request. If the 

device doesn’t discard unnecessary SYN requests, the device resources (CPU) are fully 

consumed by network services. Unavailability of CPU resources to the DNP3 task causes DNP3 

slave to stop responding to master requests.  

 

 

 
Figure 12: CPU utilization on device during a TCP SYN storm 

 

3.3.5 Open Port attack 

 

Open ports are possible entries into the device. Behind open ports, there are applications and 

services listening for connections from the outside world. CIP-007-5 System Security 

Management advises that ports should be open only if they are required and in use. Such 

required TCP ports may be SSH, DNP3 TCP, Modbus TCP, HTTP and required UDP ports may 

be NTP, SNMP, DNP3/UDP. 

 

Each open port may be the target of denial of service (DoS) attacks. Some applications and 

services have protection mechanisms implemented to withstand DoS attacks to a certain extent. 

But other applications may not have such defence, causing the device to go down when sufficient 

stress is put on it. But even robust protocol implementations, with proper discard mechanisms for 

invalid and suspicious requests, may still not be enough. The security community has identified a 
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list of ports commonly used by malware for attacks and they named this list of ports the “Trojan 

ports”. 

 

By performing active port scanning and banner grabbing, one can determine what ports are open. 

This analysis gives instant visibility into the security of the device from the outsider’s 

perspective. Figure 13 shows a TCP scan that tries to find opened TCP ports. Figure 14 shows a 

UDP scan that tries to find open UDP ports and increments the destination port in each UDP 

packet.  

 

  
Figure 13: TCP port scan 

 

 
Figure 14: UDP port scan 

 

When an attacker finds an open TCP or UDP port, the attacker may send a storm to that specific 

port. The port may not be even used for an active service in the device. This attack may cause 

system instability and may even crash the whole device. This may interrupt all communications 

on the device, including DNP3 polls and controls. Thus, we can see that an attacker can perform 

successful denial of service attacks on any protocols, without even targeting the specific port of 

interest. 

 

3.4 DNP3 Grammar 

 

Distributed Network Protocol (DNP3) is a master/slave protocol. The DNP3 fuzzer can run on 

master or client. We simulate DNP3 fuzzer on the client. As shown in Figure 15, DNP3 fuzzer 

acts as the master, which generates malformed DNP3 packets and sends them to the client. 
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Figure 15: Setup for testing DNP3 grammar 

 

DNP3 protocol stack consists of Datalink Layer, Transport Layer, Application Layer and User 

Layer. DNP 3 data link layer adds addressing and error detection prior to sending frame over the 

physical layer. See Figure 16 for a full description of the DNP3 packet. DNP3 was originally a 

serial protocol, and it was later developed to be transported over TCP and UDP. 

 

 

 
Figure 16: DNP3 packet 

 

Some of the DNP3 requests we used for DNP3 fuzzing are: 

1. DNP Read Requests - Masters send DNP3 Read messages to request information from an 

outstation. For Read messages, the function code is 01 and the payload contains Read Data 

Objects. 

2. DNP select and operate requests - Masters use Select message to instruct an outstation to 

select data points, as directed by the data objects in the message; an Operate message 

instructs an outstation to activate those points. Selected points are not activated until the 

outstation receives a corresponding Operate message from the master. 

3. DNP write requests - Masters send DNP3 Write requests to instruct an outstation to store the 

information contained in the message. For Write messages, the function code is 02 and the 

payload contains Write Data Objects. 

In the above requests, we manipulated the fields in datalink, transport and application layers. 

Figure 17 shows the methods we use to manipulate DNP3 packets. We used DNP3 over TCP to 

attack the target. And we used invalid values in those fields to generate malformed packets. 

Invalid values included values outside of the acceptable range specified by the DNP3 protocol 

specification and values known to cause problems for receivers (NULL characters). Receiver 

should reject these malformed packets and only accept packet with valid values.  
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In the Figure 18 we changed the Datalink start bytes to 0x4141, instead of 0x0564, which is the 

correct value. In Figure 19 we generated a packet with invalid datalink layer control. In Figure 

20, target device received a DNP3 packet from a different source than it was configured to. 

Figure 21 shows an example of invalid CRC and Figure 22 shows an example of an invalid 

application layer function code. In Figure 23, we are sending an operate request with bogus 

number of objects to the target. Target device should correctly validate DNP3 packets according 

to the protocol specification and reject DNP3 packets that contain values outside of the 

acceptable range. 

 

We remove values or fields from the protocol structure to create packets with empty fields. 

Receivers expect data to appear in the order specified by the protocol standard. By sending these 

empty packets we cause the receiver to be unable to recognize the packet type, process data. And 

we monitor how the receiver handling these DNP 3 packets with missing fields. 

 

We can create overflow attacks by inserting input with a large number of random bytes in an 

effort to cause the data to exceed the boundaries of its specified location. Receivers should 

correctly validate integer calculations and field lengths to prevent overflow data to execute 

arbitrary code.  
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Figure 17 DNP3 Request Fuzzing 

 

 

 
Figure 18: Invalid start value 

 

 
Figure 19: Invalid datalink control 
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Figure 20: Invalid source 

 

 
Figure 21: Invalid CRC 

 

 
Figure 22: Unknown function code 
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Figure 23: Invalid number of items 

 

4 SECURITY TESTING AND REGULATORY STANDARDS 

Cyber security regulatory standards impose compliance to the requirements they define. 

Examples of regulatory standards are NERC CIP [1] and IEEE 1686-2013 Standard for 

Intelligent Electronic Devices Cyber Security Capabilities [2]. 

If the vendor of an IED claims compliance with a security regulatory standard, that vendor 

should ensure that all the requirements that apply to the IED have been system tested and they 

work. Test cases must be designed for each of these requirements and run as part of the security 

system testing. 

For instance NERC CIP 5, section 004, requirement 4.1, which refers to the access management 

program, requires a “process to authorize based on need, as determined by the Responsible 

Entity”. This requirement applies to IEDs. An IED may implement a role based access control 

scheme (RBAC) that would ensure authorization is given to authenticated users only as defined 

by the role associated with that user. For example an operator would be allowed to execute 

commands, but not to change the configuration of the IED. If this feature is implemented and it 

is verified as working during system testing, then requirement 4.1 from NERC CIP 5 section 004 

is met. 

Another example from NERC CIP 5 is section 007, requirement 4.1 regarding Security Event 

Monitoring, which requires to “log events at the BES Cyber System level (per BES Cyber System 

capability) or at the Cyber Asset level (per Cyber Asset capability) for identification of, and 

after‐the‐fact investigations of Cyber Security Incidents”. 

This requirement applies to IEDs. An IED may meet this requirement if it implements all the 

security events specified in section 007, requirement 4 and, during system testing, it is proved 

that the events are all properly issued and logged. 

One interesting example from NERC CIP 5 refers to open ports. Section 007, requirement 1.1, 

specifies that devices should, where technically feasible: “enable only logical network accessible 

ports that have been determined to be needed by the Responsible Entity”. This requirement 

shows that NERC CIP recognises that open ports raise a device’s vulnerability. 
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We can see then how important the system security testing step is, as it takes care of verifying all 

aspects of security on the IED. Security features, vulnerabilities and compliance with regulatory 

standards are all supposed to be covered during the IED system testing.  

But for this to happen, a proper, well thought testing specification must be produced in advance 

of testing, the specification must be reviewed by the security architect and the design leaders and 

and, after that, its test cases run. All these steps are part of the process called software 

development process, which we will talk about in the next section. 

 

5 THE SOFTWARE DEVELOPMENT PROCESS 

The software development process is a set of correlated activities involved in creating and 

maintaining a software product. IEDs contain embedded software, which must be developed 

following a strict software development process, in order for quality to be guaranteed. 

There are many approaches to software project management, known as software development 

life cycle models. Among the most known models is the traditional waterfall and the agile 

software development. However, independent of the model used, the following stages will 

always be part of the software development: 

1. Problem analysis 

2. Drawing the requirements  

3. Design 

4. Implementation 

5. Testing 

6. Deployment  

7. Maintenance  

 

The first two steps do not bring in any additional security vector, unless the feature under design 

is itself a security feature. Researchers analyze the problem, study the market and write the 

requirements in a functional specification.   The document is reviewed and the design process is 

started. 

 

From the design point on however the security vector must be taken into account, even if the 

feature under design is not directly related to cyber security. 

For instance multiple processes accessing a common resource must ensure the use of semaphores 

or else, in certain circumstance, the system may be locked permanently, which would manifest 

like a denial of service attack, or the information read may not be accurate. 

Another typical example is related to memory management. An improper memory management 

design could manifest as reading or writing out of boundaries, which may lead to system crashes, 

but may also be exploited to leak important information outside the system.  

And as important, the event handling mechanism must be carefully designed. Events have 

usually context information associated with them, which contains pointers to data that the event 

needs to access. If this access is not designed properly, chances are that the data may be released 

without knowing that there are still events accessing it and this may lead to unexpected behavior 

or system crashes. 

The design phase must be ended with a through design review and the documentation stored on a 

secure source control server. 
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The implementation phase is also prone to introducing security issues/vulnerabilities.  

Developers should be trained in secure coding practices to ensure best quality coding. Among 

the secure coding practices I will mention the need to initialize all the variables and to validate 

inputs. Uninitialized variable and non-validated inputs are some of the most common coding 

vulnerabilities. 

OWASP [3] has compiled a reference guide for secure coding practices, which applies for any 

coding language and software. 

Once a portion of the code is written and compiled, peer code review is essential as is unit testing 

done by the developer who wrote that part/module of code and integration testing with the other 

related modules, done by all involved developers. 

Next phase is the secure validation testing. Looking at the image in Fig 24 we can get a better 

understanding of the important role this phase has. There is a high probability that vulnerabilities 

have been introduced during design and implementation. Some may have been discovered and 

rectified during design and code review or during unit and integration testing. But the last chance 

before deployment is at this point, during the validation testing.  Beyond this point, the product is 

released and the vulnerability management is harder and more painful, as it may involve 

unhappy customers and lost revenue. 

 
Figure 24: Software Development Process 

 

6 CONCLUSSION 

This paper demonstrated the importance of thoroughly testing the robustness of IEDs from the 

security point of view and it explored the various types of vulnerability tests to be considered 

while showing some of the testing methods available. 

The paper emphasized the importance of testing not only the security features deliberately 

designed and implemented in the product, but also testing for software vulnerabilities potentially 

introduced during the software development process. It discussed aspects such as vulnerability 

exploitations, the importance of early vulnerability detection, ways in which the security testing 

helps towards compliance with regulatory standards and the importance of designing and coding 

with security in mind.  
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