

1

The Importance of Testing Smart Grid IEDs against Security Vulnerabilities

PUBUDU EROSHAN WEERATHUNGA, ANCA CIORACA

General Electric Grid Solutions - Canada
Email: anca.cioraca@ge.com

SUMMARY

As the Smart Grid becomes highly interconnected, the power protection, control, and monitoring

functions of the grid are increasingly relying on the communications infrastructure, which has

seen rapid growth. At the same time concerns regarding cyber threats have attracted significant

attention towards the security of power systems. A properly designed security attack against the

power grid can cause catastrophic damages to equipment and create large scale power outages.

The smart grid consists of critical IEDs, which are considered high priority targets for malicious

security attacks.

For this reason it is very important to design the IEDs from the beginning with cyber security in

mind, starting with the selection of hardware and operating systems, so that all facets of security

are addressed and the product is robust and can stand attacks.

Fact is that the subject of cyber security is vast and it covers many aspects.

This paper focuses mainly on one of these aspects, namely the aspect of IED firmware system

testing from the security point of view. The paper discusses practical aspects of IED security

testing, and introduces the reader to types of vulnerability exploitations on the IED

communication stack and SCADA applications, practical aspects of security testing, the

importance of early vulnerability detection and ways in which the security testing helps towards

regulatory standards compliance, such as NERC-CIP.
Finally, based on the results from the simulated attacks, the paper discusses the importance of

good security practices in design and coding, so that the potential to introduce vulnerabilities is

kept to a minimum.

Designing with security in mind also includes good security practices, both in design and coding,

and adequate policies for the software development process. Critical software development

milestones must be established, such as design and test documentation review, code review, unit,

integration and system testing.

KEYWORDS

IED = Intelligent Electronic Device

OT = Operational Technology

TCP/IP = Transmission Control Protocol/Internet Protocol

IT = Information Technology

CVE = Common Vulnerabilities and Exposures

CPU = Central Processing Unit

OSI = Open System Interconnect

UDP = User Datagram Protocol

DNP = Distributed Network Protocol

IP = Internet Protocol

2

MAC = Media Access Control

MTU = Maximum Transmission Unit

1 INTRODUCTION

The reliability and security of the power grid is essential. Every device in the grid must

participate into making the security of the grid a reality.

The modern IEDs must be themselves designed with cyber security features and functions which,

on one side, will make them robust and resistant to cyberattacks and, on the other side, allow

them to assist in secure centralized management and remedial action schemes in the grid.

Cyber security is a very complex endeavor at any level, whether at the IED level or the whole

OT and for that reason proper and detailed cyber security system testing of IED firmware is of

utmost importance, as the system testing phase is the last point in the firmware development

before a new release hits the market.

In this paper we are going to present some practical aspects of IED security testing which we

consider essential to a robust product.

1.1 GENERAL

Cyber security in substations and IEDs is still in an early age. While this is a subject that has

been given a lot of attention and for a long time in the IT world, utility companies and industrial

control systems have been slow in acknowledging its importance. This is partially because of the

fact that traditionally these environments have been isolated, the communication being done over

dedicated lines and proprietary protocols and providing some sort of security by isolation and

obscurity. Utility companies for instance were used to believe (and many still are) that physical

security is all that is needed. Hence they developed very strong policies for personnel access into

the substation. While these are very good measures, they are far from being enough in today’s

world. There are a few reasons contributing to this situation:

- Communications is not isolated anymore. IEDs may communicate with SCADA and control

systems over an IP based network, even the Internet.

- Communications protocols are not proprietary anymore. Many standards have been

developed for IED protocol communications for the purpose of interoperability among

various vendors.

- There has been a marked increase in malicious attacks and the focus on unauthorized access

has broadened from amateur attackers or disgruntled employees to deliberate criminal or

terrorist activities aimed at impacting large groups and facilities.

Only recently, due to NERC CIP regulations [1], cyber security in the electric grid starts to see

more focus and vendors are asked to add more security protections in IEDs.

This paper focuses on testing the security aspects of the IED. Also, based on the results from the

simulated attacks, the paper discusses the importance of good security practices in design and

coding as well as adequate policies for the software development process, so that the potential to

introduce vulnerabilities is kept to a minimum.

3

2 IED SECURITY TESTING

Testing the IED from the security perspective involves testing all the security features and

mechanisms introduced by design in the IED, as well as testing for possible vulnerabilities,

which are security weaknesses inadvertently introduced in software due to poor design and

coding.

Most IEDs are already implementing or in the process of implementing security mechanisms for

supporting utility companies with NERC CIP compliance. The five security functions NERC

CIP addresses and utility companies need to respond to are: Identify, Protect, Detect, Respond

and Recover. To assist utility companies, IEDs may implement security features from all these

aspects. For instance protection measures within the IED may include mechanisms for user

authentication and accounting, user authorization based on need and encryption on

communications protocols. Detection measures may include event logging of all security events

with classification and timestamps.

All these security mechanisms and features must be thoroughly tested, initially by developers

and secondly by a separate testing group, who performs system tests for functionality, to ensure

the end result is as described by the requirements in the functional specification. The test cases

must be formulated to follow exactly these requirements. But this is not enough.

The second part of security system testing must address vulnerabilities.

Vulnerabilities may become a problem if they are uncovered and exploited by malicious

organizations or individuals. Depending on the weakness, various penetration schemes may be

implemented by attackers. So finding these weaknesses as early as possible and definitely before

the software is released, is highly desirable. Of course, some of these weaknesses may have been

already addressed in earlier stages of the software development, during the design or code

review, as well as during the unit and integration testing. But the last chance is during the system

testing and, since this testing is done by different people than the developers, from a different

perspective and with different tools, chances are that additional vulnerabilities will be found at

this point.

3 VULNERABILITIES EXPLOITATION

3.1 Vulnerabilities and Ways Hackers Exploit Them

Vulnerabilities are weaknesses within the product that may be penetrated and exploited by an

intruder. The penetration may be done either from outside or inside the Electronic Security

Perimeter. Vulnerabilities may be present in the device due to intentionally left backdoors in the

released software or unintentional weaknesses produced by bad design and coding practices. As

an example of intentional vulnerability, a programmer might leave a backdoor open in the

firmware for debug purpose, allowing outside intruder access to sensitive hardware, which an

attacker may use to escalate user’s rights and access sensitive information. Examples of

unintentional vulnerabilities can be manufacturing defects, programming errors or design flaws.

Vulnerabilities are the weakest places in a device. Attackers can exploit these vulnerabilities to

interrupt device communications or take the device down completely. Therefore, the impact of a

security breach by exploiting an existing vulnerability is very high. Publicly known information-

security vulnerabilities and exposures are listed in the Common Vulnerabilities and Exposures

(CVE) system.

Table 1 lists some of the vulnerabilities sources and attack methods specific to smart grid IEDs.

4

Vulnerabilities Description

Unchanged default

passwords

If default passwords are left unchanged, attackers may access

the device using default login information available in user

guides and manuals

Bad design and coding

practices

There are many situations of varying complexity in this

category. Among them we mention missing input validation,

race conditions, buffer overflows and memory leaks.

The attack type depends on the actual vulnerability.

e.g: If the input validation is missing, an attacker may enter

out of range values that may not be tolerated by the internal

design, resulting in a device crash.

Memory leaks may be exploited by consuming all memory

and leaving the device unusable.

In exploitations of buffer overflows, an attacker may write

outside the allocated memory and crash the device.

Test and debug features

left in the production

build

This may allow an attacker to bypass normal login protection

and get a higher level of rights to sabotage device

functionality. Displaying debug information will reveal

device functionality, allowing attackers to understand device

internal behaviour.

Unencrypted/ Unsigned

sensitive information

Network traffic is exposed to network sniffing, spoofing,

replay attacks and Man-in-the -Middle attacks

No limit conditions in

incoming packet rates

Packet storm attacks may cause Denial of Service by raising

the network service CPU utilization and causing extreme

network congestion.

Weak password policies

and no limit in number

of authentication failed

attempts

Weak passwords may be exploited by password guessing,

dictionary attacks and brute-force attacks.

Vulnerabilities from

third party software

components and

operating systems (the

TCP/IP stack, security

stack, operating system)

Third party software may not have been thoroughly tested

and may contain vulnerabilities. Once integrated in your

device, those vulnerabilities will be transferred to your

device.

 Table 1 – Examples of vulnerabilities

Attackers use vulnerabilities such as those described above to exploit the system.

Table 2 divides the attacks based on how they are conducted, and presents possible counter

measures, which, if implemented, may help defend them.

5

Attack Description Countermeasures

Passive Passive monitoring of communications

sent over public media.

Virtual private networks (VPN),

cryptographically protected networks

Active Attempts to circumvent or break security

features, introduce malicious code (e.g.

computer viruses), and subvert data or

system integrity.

Strong enclave boundary protection

(e.g., firewalls and guards), access

control based on authenticated

identities (ID) for network

management interactions, protected

remote access, quality security

administration, automated virus

detection tools, auditing, and

intrusion detection.

Close-in Attacks in which an unauthorized

individual gains close physical proximity

to networks, systems, or facilities for the

purpose of modifying, gathering, or

denying access to information. Gaining

such proximity is accomplished through

clandestine entry, open access, or both.

Security awareness and training;

Auditing and intrusion detection;

Security policy and enforcement;

Specialized access control to critical

servers and network elements;

Strong authentication and

authorization.

Insider Performed by a person who either is

authorized to be within the physical

boundaries of the information system or

has direct access to the information

security processing system

Distribution Malicious modification of hardware or

software between the time of its

production by a developer and its

installation, or when it is in transit from

one site to another.

Strong in-process configuration

control for addressing vulnerability at

the factory

Use of controlled distribution or by

signed software and access control

that is verified at the final user site for

addressing in transit vulnerabilities.

3.2 Product Vulnerability Assessment

Products may handle several communications protocols to support communications with

other devices and services. Depending on their functionality, these protocols may be located

at different layers of the OSI communications stack. Figure 1 shows some of the protocols

and their positioning in the network stack. When we test these communications protocols for

vulnerability assessments, testing has to be carried out at all layers of the network stack that

the protocol touches.

6

 Figure 1: The OSI Stack and Associated Protocols

For our vulnerability assessment we used tools similar with those an attacker might use to

exploit product vulnerabilities. As an example, an attacker may use a port scanner to find an

open TCP port and then execute a TCP SYN storm attack on that port. In this section, we

describe some of the attacking tools that can be used to perform a product vulnerability

assessment.

Scans

Scanning tools are one of first tools an attacker uses to gather information about a device in

order to exploit it. Scanning tools, such as port scanning, probe a device to find open ports.

There are several types of scanning methods that are named after the type of service or

protocol they are scanning. Some scanning methods are TCP, UDP, SYN, ACK and FIN

scanning. As the names imply TCP scans give a list of TCP ports open in a device, while

UDP scans give a list of open UDP ports in a device.

Storms

As the name implies, storms are sending packets in a higher rate to a target device to execute

a denial of service attack. In general, the ability of a device to handle packets varies with

packet rate. So it is important to execute each storm test case with different rate limits to

determine the maximum threshold that the device can handle.

Fuzzers

Fuzz testing is injecting malformed, unexpected, or random data in the device and observing

its behaviour under attack. Fuzzer tests generate valid and invalid packets with randomized

header values and lengths. In general, fuzzers are randomly choosing fields to fuzz in the

protocol. Fuzzing can find a range of critical bugs including input validation failures,

memory corruption and infinite loops. Some examples of fuzzing tests are Ethernet Fuzzers,

IP Fuzzers and DNP3 Fuzzers.

7

Grammars

Grammars are another type of fuzz testing. But the difference is that grammars don’t choose

randomly the fields to fuzz. Grammars iterate over each field and choose fuzz values in a

predetermined way, to better serve test coverage. Protocol grammars like DNP3 grammar,

manipulate protocol data format at different layers of the protocol stack. Protocol grammars

use valid protocol interactions at one layer to transport invalid data to a higher layer. The

handler in each layer should validate its input and discard the data if it contains invalid or

malformed fields. If the handler does not validate its input, these malformed fields might

cause the device to crash or behave abnormally. Grammars are useful for in depth protocol

handler analysis, because these handlers may be unprepared for invalid input.

3.3 Attack Simulation Examples

The test setup in Figure 2 was used for the attack simulations described below. The device under

test had two redundant Ethernet ports, and we used 100 Mbps Ethernet links. We simulated

attacks on the first port and we executed a DNP3 Class poll and “Select Before Operate” control,

using DNP3 TCP/IP on the other port. In storm tests, we increment the storm rate (percentage of

link utilization) and monitor ability to execute DNP3 TCP/IP poll and SBO controls.

 Figure 2: Test setup for attack simulations

The following IP addresses are used in the test setup,

 Attack PC IP address : 10.100.3.100

 Device IP address : 10.100.3.50

3.3.1 ARP Tests

Address Resolution Protocol (ARP) is a data link layer protocol used to map network layer

protocol addresses to Ethernet MAC addresses. In other words, this means mapping IP addresses

to Ethernet MAC addresses. It uses a memory table, called the ARP cache, to map network layer

protocol addresses to data link layer hardware addresses.

3.3.1.1 ARP Request Storm

8

ARP Request Storm sends identical, valid ARP requests to the device at a chosen packet rate.

We changed the packet rate in each test and observed Device behaviour.

As shown in Figure 3, the destination MAC address is set to the global broadcast MAC address

(FF:FF:FF:FF:FF:FF) and the destination IP address is set to the device’s IP address

(10.100.3.50). We send these valid ARP requests in higher packet rate to the target device and

examine the device ability to maintain normal DNP3 polls and controls while dealing with the

storm.

Figure 3: ARP request storm

3.3.1.2 ARP Host Reply Storm

ARP Host Reply Storm sends identical, valid, but unsolicited ARP replies from the attack PC IP

address, to the device at a chosen packet rate. We changed the storm rate in each test to analyse

device behaviour. As shown in Figure 4, the attack PC (10.100.3.100) sends unsolicited ARP

replies to the device in higher packet rate. Attack PC IP address should be in the device’s ARP

cache already. All ARP replies should process properly and this should not affect the ARP

cache. We send these valid ARP replies in higher packet rate to the target device and examine

the device ability to maintain normal DNP3 polls and controls while dealing with the storm.

Figure 4: ARP host reply storm

3.3.1.3 ARP Cache Saturation Storm

ARP Cache Saturation Storm sends valid but unsolicited ARP replies from various IP addresses

to the device at a specific packet rate in an attempt to saturate the ARP cache. As shown in

Figure 5, we send ARP replies with different IP addresses and MAC addresses. We examine the

ARP cache of the device, while the device is under attack. Then we increase the storm rate and

the time duration of the test to saturate the ARP cache.

9

Figure 4: ARP cache saturation

3.3.1.4 ARP Grammar

ARP Grammar sends ARP request packets with valid and invalid header values.

As shown in Figure 5, ARP header fields are manipulated by the grammar, resulting in both valid

and invalid values. The following ARP header fields have been manipulated; Hardware Type,

Protocol Type, Hardware Size, Protocol Size, Operation, Sender MAC Address, Sender Protocol

Address, Target MAC Address, and Target Protocol Address.

Figure 5: ARP grammar

3.3.2 IP tests

Internet Protocol (IP) is located at the network layer of the communication stack. IP packets are

used by many upper layer protocols in their network layer.

3.3.2.1 IP Unicast Storm

IP Unicast Storm sends identical, valid IP packets to the device at a specific packet rate. Each

packet contains a null payload. As shown in Figure 6, the source IP address is set to the attack

PC IP address and the destination IP address is set to the device IP address.

Figure 6: IP unicast storm

10

3.3.2.2 IP Broadcast Storm

IP Broadcast Storm sends identical, valid IP packets and broadcasts them over the Ethernet link

at a specific packet rate. Each packet contains a null payload. As shown in Figure 7, the source

IP address is set to the Attack PC IP (10.100.3.100) address and the destination IP address is set

to a broadcast IP address (10.100.3.255).

Figure 7: IP broadcast storm

3.3.2.3 IP Fragmented Storm

When an IP packet is larger than the Maximum Transmission Unit (MTU) of the network it is

using, the packet has to be broken into smaller blocks of data (fragmentation) for transmission.

In the receiver, these packets are reassembled to the original packet prior to further processing.

There fragments may arrive out of order, therefore the receiver keeps received fragments in

memory until it receives the final fragment. IP Fragmented Storm sends valid, fragmented IP

packets and sends them to the device at a specific packet rate. Also in this test, we didn’t send

the final fragment packet, by forcing receiving device to keep the incomplete packets in memory.

Device should discard incomplete fragmented packets from memory to prevent memory and

resource exhaustion.

Figure 8: IP fragmented storm

3.3.3 ICMP storm

ICMP Storm generates ICMP packets with different type/code combinations, both valid and

invalid, and sends them to the device at a specific packet rate.

11

Figure 9: ICMP storm

3.3.4 TCP tests

Transmission Control Protocol (TCP) is located at Transport layer. It provides reliable, ordered,

and error-checked delivery of a packet stream. Critical application layers protocols are rely on

TCP implementation. These TCP tests are trying to exploit vulnerabilities in TCP.

3.3.4.1 TCP/IP Land attack

LAND attack is a well-known protocol attack that can cause a device to continuously reply to

itself. As shown in Figure 10, we generated TCP packets with the same address for the source

and destination IP address (10.100.3.50), and the same port for the source and destination TCP

port (port 22).

Figure 10: TCP/IP Land attack

3.3.4.2 TCP SYN Storm

TCP SYN Storm generates valid SYN packets and sends them to the device at a varying packet

rate to examine the device’s ability to maintain normal behaviour. We didn’t send any SYN

ACK packets. Therefore, TCP connections are not established. In these attack packets, we set the

source IP address to an unused IP address and the destination IP address is set to the device IP

address.

12

Figure 11: TCP SYN storm

During the TCP SYN storm, the DNP3 slave stops responding to the DNP3 master requests.

When the device is under attack, the device should reject unnecessary TCP SYN request. If the

device doesn’t discard unnecessary SYN requests, the device resources (CPU) are fully

consumed by network services. Unavailability of CPU resources to the DNP3 task causes DNP3

slave to stop responding to master requests.

Figure 12: CPU utilization on device during a TCP SYN storm

3.3.5 Open Port attack

Open ports are possible entries into the device. Behind open ports, there are applications and

services listening for connections from the outside world. CIP-007-5 System Security

Management advises that ports should be open only if they are required and in use. Such

required TCP ports may be SSH, DNP3 TCP, Modbus TCP, HTTP and required UDP ports may

be NTP, SNMP, DNP3/UDP.

Each open port may be the target of denial of service (DoS) attacks. Some applications and

services have protection mechanisms implemented to withstand DoS attacks to a certain extent.

But other applications may not have such defence, causing the device to go down when sufficient

stress is put on it. But even robust protocol implementations, with proper discard mechanisms for

invalid and suspicious requests, may still not be enough. The security community has identified a

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100 110 120

cp
u

 u
lt

ili
za

ti
o

n

Time (s)

20 % Link

50% Link

70% Link

13

list of ports commonly used by malware for attacks and they named this list of ports the “Trojan

ports”.

By performing active port scanning and banner grabbing, one can determine what ports are open.

This analysis gives instant visibility into the security of the device from the outsider’s

perspective. Figure 13 shows a TCP scan that tries to find opened TCP ports. Figure 14 shows a

UDP scan that tries to find open UDP ports and increments the destination port in each UDP

packet.

Figure 13: TCP port scan

Figure 14: UDP port scan

When an attacker finds an open TCP or UDP port, the attacker may send a storm to that specific

port. The port may not be even used for an active service in the device. This attack may cause

system instability and may even crash the whole device. This may interrupt all communications

on the device, including DNP3 polls and controls. Thus, we can see that an attacker can perform

successful denial of service attacks on any protocols, without even targeting the specific port of

interest.

3.4 DNP3 Grammar

Distributed Network Protocol (DNP3) is a master/slave protocol. The DNP3 fuzzer can run on

master or client. We simulate DNP3 fuzzer on the client. As shown in Figure 15, DNP3 fuzzer

acts as the master, which generates malformed DNP3 packets and sends them to the client.

14

Figure 15: Setup for testing DNP3 grammar

DNP3 protocol stack consists of Datalink Layer, Transport Layer, Application Layer and User

Layer. DNP 3 data link layer adds addressing and error detection prior to sending frame over the

physical layer. See Figure 16 for a full description of the DNP3 packet. DNP3 was originally a

serial protocol, and it was later developed to be transported over TCP and UDP.

Figure 16: DNP3 packet

Some of the DNP3 requests we used for DNP3 fuzzing are:

1. DNP Read Requests - Masters send DNP3 Read messages to request information from an

outstation. For Read messages, the function code is 01 and the payload contains Read Data

Objects.

2. DNP select and operate requests - Masters use Select message to instruct an outstation to

select data points, as directed by the data objects in the message; an Operate message

instructs an outstation to activate those points. Selected points are not activated until the

outstation receives a corresponding Operate message from the master.

3. DNP write requests - Masters send DNP3 Write requests to instruct an outstation to store the

information contained in the message. For Write messages, the function code is 02 and the

payload contains Write Data Objects.

In the above requests, we manipulated the fields in datalink, transport and application layers.

Figure 17 shows the methods we use to manipulate DNP3 packets. We used DNP3 over TCP to

attack the target. And we used invalid values in those fields to generate malformed packets.

Invalid values included values outside of the acceptable range specified by the DNP3 protocol

specification and values known to cause problems for receivers (NULL characters). Receiver

should reject these malformed packets and only accept packet with valid values.

15

In the Figure 18 we changed the Datalink start bytes to 0x4141, instead of 0x0564, which is the

correct value. In Figure 19 we generated a packet with invalid datalink layer control. In Figure

20, target device received a DNP3 packet from a different source than it was configured to.

Figure 21 shows an example of invalid CRC and Figure 22 shows an example of an invalid

application layer function code. In Figure 23, we are sending an operate request with bogus

number of objects to the target. Target device should correctly validate DNP3 packets according

to the protocol specification and reject DNP3 packets that contain values outside of the

acceptable range.

We remove values or fields from the protocol structure to create packets with empty fields.

Receivers expect data to appear in the order specified by the protocol standard. By sending these

empty packets we cause the receiver to be unable to recognize the packet type, process data. And

we monitor how the receiver handling these DNP 3 packets with missing fields.

We can create overflow attacks by inserting input with a large number of random bytes in an

effort to cause the data to exceed the boundaries of its specified location. Receivers should

correctly validate integer calculations and field lengths to prevent overflow data to execute

arbitrary code.

16

Figure 17 DNP3 Request Fuzzing

Figure 18: Invalid start value

Figure 19: Invalid datalink control

17

Figure 20: Invalid source

Figure 21: Invalid CRC

Figure 22: Unknown function code

18

Figure 23: Invalid number of items

4 SECURITY TESTING AND REGULATORY STANDARDS

Cyber security regulatory standards impose compliance to the requirements they define.

Examples of regulatory standards are NERC CIP [1] and IEEE 1686-2013 Standard for

Intelligent Electronic Devices Cyber Security Capabilities [2].

If the vendor of an IED claims compliance with a security regulatory standard, that vendor

should ensure that all the requirements that apply to the IED have been system tested and they

work. Test cases must be designed for each of these requirements and run as part of the security

system testing.

For instance NERC CIP 5, section 004, requirement 4.1, which refers to the access management

program, requires a “process to authorize based on need, as determined by the Responsible

Entity”. This requirement applies to IEDs. An IED may implement a role based access control

scheme (RBAC) that would ensure authorization is given to authenticated users only as defined

by the role associated with that user. For example an operator would be allowed to execute

commands, but not to change the configuration of the IED. If this feature is implemented and it

is verified as working during system testing, then requirement 4.1 from NERC CIP 5 section 004

is met.

Another example from NERC CIP 5 is section 007, requirement 4.1 regarding Security Event

Monitoring, which requires to “log events at the BES Cyber System level (per BES Cyber System

capability) or at the Cyber Asset level (per Cyber Asset capability) for identification of, and

after‐the‐fact investigations of Cyber Security Incidents”.

This requirement applies to IEDs. An IED may meet this requirement if it implements all the

security events specified in section 007, requirement 4 and, during system testing, it is proved

that the events are all properly issued and logged.

One interesting example from NERC CIP 5 refers to open ports. Section 007, requirement 1.1,

specifies that devices should, where technically feasible: “enable only logical network accessible

ports that have been determined to be needed by the Responsible Entity”. This requirement

shows that NERC CIP recognises that open ports raise a device’s vulnerability.

19

We can see then how important the system security testing step is, as it takes care of verifying all

aspects of security on the IED. Security features, vulnerabilities and compliance with regulatory

standards are all supposed to be covered during the IED system testing.

But for this to happen, a proper, well thought testing specification must be produced in advance

of testing, the specification must be reviewed by the security architect and the design leaders and

and, after that, its test cases run. All these steps are part of the process called software

development process, which we will talk about in the next section.

5 THE SOFTWARE DEVELOPMENT PROCESS

The software development process is a set of correlated activities involved in creating and

maintaining a software product. IEDs contain embedded software, which must be developed

following a strict software development process, in order for quality to be guaranteed.

There are many approaches to software project management, known as software development

life cycle models. Among the most known models is the traditional waterfall and the agile

software development. However, independent of the model used, the following stages will

always be part of the software development:

1. Problem analysis

2. Drawing the requirements

3. Design

4. Implementation

5. Testing

6. Deployment

7. Maintenance

The first two steps do not bring in any additional security vector, unless the feature under design

is itself a security feature. Researchers analyze the problem, study the market and write the

requirements in a functional specification. The document is reviewed and the design process is

started.

From the design point on however the security vector must be taken into account, even if the

feature under design is not directly related to cyber security.

For instance multiple processes accessing a common resource must ensure the use of semaphores

or else, in certain circumstance, the system may be locked permanently, which would manifest

like a denial of service attack, or the information read may not be accurate.

Another typical example is related to memory management. An improper memory management

design could manifest as reading or writing out of boundaries, which may lead to system crashes,

but may also be exploited to leak important information outside the system.

And as important, the event handling mechanism must be carefully designed. Events have

usually context information associated with them, which contains pointers to data that the event

needs to access. If this access is not designed properly, chances are that the data may be released

without knowing that there are still events accessing it and this may lead to unexpected behavior

or system crashes.

The design phase must be ended with a through design review and the documentation stored on a

secure source control server.

20

The implementation phase is also prone to introducing security issues/vulnerabilities.

Developers should be trained in secure coding practices to ensure best quality coding. Among

the secure coding practices I will mention the need to initialize all the variables and to validate

inputs. Uninitialized variable and non-validated inputs are some of the most common coding

vulnerabilities.

OWASP [3] has compiled a reference guide for secure coding practices, which applies for any

coding language and software.

Once a portion of the code is written and compiled, peer code review is essential as is unit testing

done by the developer who wrote that part/module of code and integration testing with the other

related modules, done by all involved developers.

Next phase is the secure validation testing. Looking at the image in Fig 24 we can get a better

understanding of the important role this phase has. There is a high probability that vulnerabilities

have been introduced during design and implementation. Some may have been discovered and

rectified during design and code review or during unit and integration testing. But the last chance

before deployment is at this point, during the validation testing. Beyond this point, the product is

released and the vulnerability management is harder and more painful, as it may involve

unhappy customers and lost revenue.

Figure 24: Software Development Process

6 CONCLUSSION

This paper demonstrated the importance of thoroughly testing the robustness of IEDs from the

security point of view and it explored the various types of vulnerability tests to be considered

while showing some of the testing methods available.

The paper emphasized the importance of testing not only the security features deliberately

designed and implemented in the product, but also testing for software vulnerabilities potentially

introduced during the software development process. It discussed aspects such as vulnerability

exploitations, the importance of early vulnerability detection, ways in which the security testing

helps towards compliance with regulatory standards and the importance of designing and coding

with security in mind.

7 BIBLIOGRAPHY

[1] NERC CIP version 5, http://www.nerc.com/pa/Stand/Pages/CIPStandards.aspx

[2] IEEE 1686-2013: http://standards.ieee.org/findstds/standard/1686-2013.html

Secure
Design

Secure
Implementa

tion

Secure
Validation

Testing
Deployment

Vulnerability
Management

http://www.nerc.com/pa/Stand/Pages/CIPStandards.aspx
http://standards.ieee.org/findstds/standard/1686-2013.html

21

[3] OWASP The Open Web Application Security project

https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf

8 BIOGRAPHIES

Pubudu Eroshan Weerathunga is a firmware Engineer for Substation Automation Systems at

GE Grid Solution. Eroshan has implemented several SCADA communication protocols and his

work is mainly focused on cyber security of Substation Automation products. He received his

B.Sc. in Electronics and Telecommunication Engineering from University of Moratuwa, Sri

Lanka in 2009 and his M.E.Sc in Electrical and Computer Engineering from Western University,

Canada in 2012.

Anca Cioraca is an Information Technology Professional with over twenty years hands on

experience in system and software architecture, specialized in communications, networking and

cybersecurity.

Anca has a Master of Engineering degree in Electronics and Telecommunications from

Bucharest Polytechnic University, Romania. In 1991 Anca moved to Canada and for the

following twenty years she focused on software architecture and cyber security for network

devices, such as routers, firewalls and security servers, while working for Motorola, Enterasys,

Siemens and WatchGuard. In 2012 Anca joined GE Grid Solutions. Currently Anca leads the

cyber security architecture for next generation GE Grid Solutions Grid Automation products.

Anca is a member of IEEE Communications Society and the IEC TC57 working group WG15,

where she actively contributes to the definition of security requirements for the TC 57 series of

protocols.

https://www.owasp.org/images/0/08/OWASP_SCP_Quick_Reference_Guide_v2.pdf

