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Transformer Energization 

Transformer
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Relay Misoperation During Inrush 

• Sporadically, 87T relays trip undesirably 

• Low second harmonic is root cause 

• Problem is more common in new 

transformers 

• Undesired trips are troublesome 

♦ CB interrupts an inductive current 

♦ Analysis is required before energizing again 



Outline 

• Magnetizing inrush and 87T elements 

• Ultrasaturation 

• Mitigation 

• New inrush detection algorithm 

• Conclusions 



Inrush Current and 87T Element 

• Magnetizing branch is in zone 

• Inrush current measured as differential 

• Second harmonic used to block / restrain 
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Harmonic Blocking and Restraining 
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Typical Inrush Current 
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Typical Inrush Current 
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Impact of Winding Compensation 

30 40 50 60 70 80 90 100 110 120
–4

–3

–2

–1

0

1

2

3

4

5

Time (ms)

C
u

rr
e

n
t 
(p

u
)

C-A

A-B

B-C



Impact of Winding Compensation 
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Disconnect Restrike 
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Disconnect Restrike 
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87T Operating Conditions 

• Second-harmonic ratio can be well below 

typical 20% threshold 

• Typically, only one phase measures low 

second harmonic 

• Usually, second-harmonic ratio recovers 

after short time 

• Deep saturation (ultrasaturation) of core is 

root cause 



Flux Below Saturation 
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Maximum Flux Above Saturation 

Current

FluxFlux

Time

T
im

e
Current



Minimum Flux Below Saturation 
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Minimum Flux Above Saturation 
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Transient Flux During Energization 
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Transient Flux During Energization 

V(t)

ZS

Lμ

t = 0

iμ

i1

i2

0.5 • ZT 0.5 • ZT ZL

Z1 Z2

   (t) mv v sin t

        1 2–t/T –t/T
AC 0 1 2sin t – e e



Transient Flux During Energization 
Aperiodic Component Decays 
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Transient Flux During Energization 
Aperiodic Component Increases 

Flux above  

saturation point 

(ultrasaturation) 



Improved Transformer Design 
Lower Saturation Point 
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Improved Transformer Design 
Lower Losses = Higher Residual Flux 
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Cross-Phase Blocking 
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Cross-Phase Blocking  

With Time Override 
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Applying More Security When 

Energizing Transformer 
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New Inrush Detection Algorithm 
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In each power cycle 

• Currents are small 

• Currents are flat 

• Periods of small and 

flat currents are 

aligned 

• Dwell-time periods 

are longer than 2 ms 



Why Are Dwell Periods Aligned? 

Photo courtesy of W. T. Shymanski 



Why Are Dwell Periods Aligned? 
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New Inrush Detection Algorithm 
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Internal Fault During Inrush Example 
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Internal Fault During Inrush Example 
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Dwell Time Versus Second Harmonic 
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87T Speed of Operation 

• Second-harmonic blocking 

♦ Relay digital filters settle in 1 cycle 

♦ Trip permission after about 1 cycle 

• Second-harmonic restraining 

♦ Differential signal large on heavy faults 

♦ Potentially faster operation 

• Dwell-time algorithm – intentional 1-cycle 

extension of block 



Bidirectional Differential OC Element 
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Internal Fault During Inrush Example 
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Application of New Elements 

• INRUSH element blocks 87T 

• Low-set bidirectional OC element  

cancels INRUSH block 

• High-set bidirectional OC element  

trips unconditionally 
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Conclusions 

• Ultrasaturation happens due to transient 

flux or high residual flux 

• Ultrasaturation reduces second-harmonic 

level and jeopardizes 87T security 

• New transformer designs are more prone  

to ultrasaturation 

• Harmonic-based mitigation techniques 

sacrifice dependability or speed 



Conclusions 

• New inrush detection method is both 

secure and dependable 

• Bidirectional OC element considerably 

speeds up 87T operation 



Questions? 


