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Introduction 

• Occurs in power system circuits containing series capacitance, 
a non-linear transformer magnetizing inductance and 
minimum transformer and load losses 

• Initiated with transient disturbance such as opening a switch 
• Results in overvoltages and/or high current spikes that may 

subject system apparatus to dielectric and thermal stresses 
resulting in apparatus failure 

• Poses risk to operating personnel 
• Protective relays that measure these quantities are subject to 

incorrect operations causing unwanted outages 
• This presentation will present a simple tutorial with a 

graphical approach to explaining the ferroresonant operating 
states, circuit configurations and mitigation.  

• It will provide the basic concepts necessary to understanding 
more advanced investigations into unique occurrences. 
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Transformer Characteristics 
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Transformer Core and Coil 

• Magnetic coupling 
between phases 
– Core construction 

– Winding connections 

– Core bracing, joints, 
etc. 

• Phase flux 
saturation 

• Zero sequence flux 
saturation 
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RLC Circuit and Transient Response 
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RL1/2C Circuit and Transient Response 
(L1/2 is nonlinear transformer inductance) 
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RL1/2C Circuit with Driving Voltage and 
Transient Response 
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345 kV Bus Clearing 
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Energized through open breaker capacitance, circa 1976 



Ferroresonant Modes 

• Transformer operation in the ferroresonant state is 
dependent on a number of factors 
– system voltage magnitude 
– the initial voltage on the capacitor 
– the initial state of the magnetic characteristics of the transformer 
– the total loss in the ferroresonant circuit 
– the point on wave of initial switching 

• It is normally initiated after some type of switching event 
such as transformer energization, single-phase switching, 
fault clearing, breakers opening, or loss of system 
grounding 

• Given the right conditions it can lock into any of the 
following ferroresonant modes 

• The one common characteristic among these ferroresonant 
modes is that they all contain the fundamental frequency 
driving voltage component, which sustains it. 
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Ferroresonant Modes 
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Fundamental Mode Ferroresonance 

• VM oscillations at VS (system) 
frequency 

• Higher than nominal voltage 
of transformer 

• VC and VS components 

• Phase reversal – opposite 
polarity to VS 

• Positive and negative half 
cycles are generally 
symmetrical – exceptions 

• High current spikes 
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Sub-harmonic Mode Ferroresonance 

• VM oscillation periods in 
integer multiples of 
fundamental period,    TS = 
nT, n = 2, 3, …  

• 30 Hz (T=2) - Positive and 
negative half cycles are not 
always symmetrical, but 
patterns are repeated 

• 20 Hz (T=3) - Oscillations 
generally symmetrical and 
magnitude is lower than 
nominal voltage of 
transformer 

• VC and VS components 

• High current spikes 
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Quasi-periodic Mode Ferroresonance 

• VM oscillation are irregular, 
but appear periodic 
– Patterns are very nearly 

repeated, T+, T-,T+, etc., and 
with different magnitudes  

• Peak voltage much greater 
than transformer nominal 

• Greater degree of saturation 

• More coupling with other 
phases 

• VC and VS components 

• High current spikes 

 

13 Ferroresonance 



Chaotic (Hunting) Mode Ferroresonance 

• VM oscillation are irregular 
with no repetition of patterns 

• The system is hunting for a 
stable ferroresonant mode 
with a chaotic variation in 
voltage magnitudes and 
frequency 

• Peak voltage much greater 
than transformer nominal 

• Greater degree of saturation 

• More coupling with other 
phases 

• VC and VS components 

• High current spikes 
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345 kV Substation Vt Ferroresonance 

• Copy of strip chart 
record - Circa 1976 
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Transformer Operating States 
Without series resistance 
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Transformer Operating States 
Without series resistance 

 

Ferroresonance 17 

Single point solutions 



Transformer Operating States 
Without series resistance 
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Transient change of operating state 



Transformer Operating States 
With series resistance 
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Two operating states 
– Point 1/1’ – normal 

– Point 2/2’ – ferroresonant with 
phase reversal from point 1 

– Point 3/3’ cannot occur 



Transformer Operating States 
With shunt (load) resistance 
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Transformer Operating States 
With shunt (load) resistance 
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XC >> XM2 



Ferroresonant Configurations 
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Ferroresonant Configurations 
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Grounded single phase transformer on ungrounded system 

Equivalent circuit, ZS = 0 Sequence networks and connection 

Circuit 



Ferroresonant Configurations 
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Grounded three phase transformer on ungrounded system with 
unbalanced phase-to-ground capacitance 

Equivalent circuit, ZS = 0 Sequence networks and connection 

Circuit 



Ferroresonant Configurations 
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Transformer can be vt 
or power transformer 

Open breaker capacitance and transformers 

Equivalent circuit 



Ferroresonant Configurations 
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Ferroresonant Configurations 
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Transformer connected to isolated line 



Mitigation 

• Mitigation of ferroresonance involves one 
or more of following: 

– Correcting voltage unbalance 

– Changing the transformer magnetic design 

– Inserting damping resistance 

– Detuning the circuit 
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Mitigation 
Correcting voltage unbalance 

• Change operating procedures 
– E.g. - single phase switching of three phase distribution 

transformers may be changed to three phase operation 

• Applying protective relays to sense and remove the 
unbalanced condition that drives ferroresonance 
– E.g. - a voltage relay that is used to sense excessive zero 

sequence voltage and trip a circuit breaker 

• Opportunities to correct voltage unbalance should be 
investigated.  

• There are many applications where steady state 
unbalanced voltages cannot be avoided and 
alternative solutions are required 
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Mitigation 
Changing the transformer magnetic design 
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Mitigation 
Changing the transformer magnetic design 
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Mitigation 
Inserting damping resistance 

• Generally requires some form of 
“switching” RD to address 
thermal requirements 

 

Ferroresonance 32 

BurdenA

B

C

Burden

A

B

C

(a) per phase damping with a 

wye grounded secondary

(b) zero sequence damping 

with a broken delta secondary

RD

RD

RD

RD

• May require “switching” to 
address thermal requirements 

• Affect of permanent connection 
on measurement accuracy of 
burden devices  

• Correction of unbalance 

 

 



Mitigation 
With zero sequence damping resistance 
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Equivalent Circuit with broken delta resistor RD 



Mitigation 
With zero sequence damping resistance 

• Ferroresonance has often been 
mitigated with zero sequence 
damping 

• Coupled phase voltage VA, VB, VC 
is an indication of phase-to-
ground capacitance 

• 3V0 is an indication of the bus 
capacitance unbalance 

• If 3V0 is relatively small zero 
sequence damping will probably 
not be sufficient  and phase 
damping required 

• About the only generalization 
that can be made is that the 
greater the unbalance (the 
higher 3V0) the more likely zero 
sequence damping will be 
successful 
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Ferroresonance Suppression Circuits 
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Saturating Reactor Damping Circuit 
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Ferroresonance Suppression Circuits 
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Mitigation 
Detuning the ferroresonant circuit 
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Conclusions 

• Ferroresonance is a widely studied phenomenon but it is 
still not well understood because of its complex behavior - 
“fuzzy-resonance”  

• A simple graphical approach using fundamental frequency 
phasors has been presented to elevate the readers 
understanding 

• Its occurrence and how it appears is extremely sensitive to 
the transformer characteristics, system parameters, 
transient voltages and initial conditions 

• More efficient transformer core material has lead to its 
increased occurrence  

• It has considerable effects on system apparatus and 
protection  

• Power system engineers should strive to recognize potential 
ferroresonant configurations and design solutions to 
prevent its occurrence 
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